Math 581 Homework 9

May 9, 2022

Read Chapter 7.

Problem 1 (Problem 7-1).
Problem 2 (Problem 7-2).
Problem 3 (Problem 7-3).
Problem 4 (Problem 7-4).
Problem 5 (Problem 7-5).
Problem 6. Let $S^{\infty}=\bigcup_{n \geqslant 0} S^{n}$ be the union of all the spheres, where we regard $S^{n} \subseteq S^{n+1}$ by adding 0 as the last component of any vector in S^{n}. Give this the topology where a subset is closed if and only if it is closed when intersected with every S^{n}.

Prove that S^{∞} is contractible. [Hint: Consider the function $\sigma: S^{\infty} \rightarrow S^{\infty}$ defined by $\left.\sigma\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right).\right]$

Problem 7. Let X be a set with two unital, binary operations \circ and \otimes and suppose that

$$
(a \otimes b) \circ(c \otimes d)=(a \circ c) \otimes(b \circ d)
$$

for all $a, b, c, d \in X$. Show that $\otimes=0$ and both are commutative.
Problem 8. Let $\left(X, x_{0}\right)$ be a based space and let $\Omega X:=\operatorname{Map}_{*}\left(S^{1}, X\right) \subseteq \operatorname{Map}\left(S^{1}, X\right)$ be the subspace of continuous loops based at x_{0}. Construct a bijection between $\pi_{1}\left(X, x_{0}\right)$ and the set of path components of ΩX.

Problem 9. Suppose $\pi: E \rightarrow X$ is a map equipped with a section $\zeta: X \rightarrow E$ and a continuous map $m: \mathbb{R} \times E \rightarrow E$ such that: (i) $\pi(m(a, e))=\pi(e)$ for all $e \in E$, and (ii) $m(0, e)=\zeta(\pi(e))$ for all $e \in E$. Prove that π is a homotopy equivalence. (The prototypical example is if we imagine that each $\pi^{-1}(x)$ is equipped with the structure of a vector space in a manner which varies continuously with x. For example, the projection map $E_{k, n} \rightarrow$ $\operatorname{Gr}_{k}\left(\mathbb{R}^{n+k}\right)$ from Homework 6.)

