Math 581 Homework 8

May 9, 2022

Read Chapter 5, omitting the section on simplicial complexes. Read Chapter 6; you may skip the proof of the classification theorem, but it is good to understand the presentations of the standard compact surfaces.

Problem 1 (Problem 3-13).
Problem 2 (Problem 3-18).
Problem 3 (Problem 4-2).
Problem 4. Prove that if X is a locally finite $C W$-complex and Y is a $C W$-complex then $X \times Y$ (with its product topology) is a $C W$-complex. If X and Y are finite, prove that $\chi(X \times Y)=\chi(X) \cdot \chi(Y)$.

Problem 5. Suppose X is a $C W$-complex and $A \subseteq X$ is a subcomplex. Show that X / A is a $C W$-complex. If X is a finite CW-complex, prove that

$$
\chi(X)=\chi(X / A)+\chi(A) .
$$

Problem 6 (Problem 6-3).
Problem 7 (Problem 6-6).
Problem 8. Let X be a CW-complex with n-skeleton denoted $\mathrm{sk}_{n} X$. Construct a homeomorphism between $\mathrm{sk}_{n} X / \mathrm{sk}_{n-1} X$ and a wedge of n-spheres (i.e. the quotient of a disjoint union of n-spheres obtained by collapsing all of the basepoints to a single point.)

Problem 9. If J is a finite, linearly ordered set we denote by

$$
\Delta^{J}:=\left\{\left(x_{j}\right)_{j \in J} \in \mathbb{R}^{J}: \sum x_{j}=1, x_{j} \geqslant 0 \forall j \in J\right\}
$$

When $J=[n]:=\{0<1<\cdots<n\}$, we give this the shorthand Δ^{n} and call it the standard n-simplex.
(i) Prove that Δ^{n} is homeomorphic to a closed unit ball of dimension n.
(ii) Prove that Δ^{n} is homeomorphic to the space

$$
\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}: 0 \leqslant t_{1} \leqslant \cdots \leqslant t_{n}\right\} .
$$

In other words: we may imagine a point in Δ^{n} as a configuration of points on the unit interval $[0,1]$, allowing multiplicities. This visualization can be very useful when making sense of high-dimensional simplices since the image feels ' 1 -dimensional'.
(iii) For each $0 \leqslant i \leqslant n$, define

$$
\partial_{i} \Delta^{n}:=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \Delta^{n}: x_{i}=0\right\} .
$$

(called the i th face of Δ^{n}; it is the one opposite the i th vertex $e_{i}=(0,0, \ldots, 1, \ldots, 0)$.) And:

$$
\partial \Delta^{n}=\bigcup_{0 \leqslant i \leqslant n} \partial_{i} \Delta^{n}
$$

called the boundary of the n-simplex. Construct homeomorphisms $\partial_{i} \Delta^{n} \simeq \Delta^{n-1}$ and $\partial \Delta^{n} \cong S^{n-1}$. It may be helpful to understand this construction both in terms of the standard definition of the n-simplex and using the interpretation in the previous part. Also observe that this gives a construction of S^{n-1} as a CW-complex with $n+1$ different ($n-1$)-cells.
(iv) Build a homeomorphism between $\Delta^{n} \times[0,1]$ and a union of $n+1$ copies of Δ^{n+1} glued along faces. (Hint: While this can be 'seen' when $n=1$ and $n=2$, in higher dimensions it may be easier to sort out what's happening using (ii).)

