Math 581 Homework 6

October 4, 2022

Read the sections on compactness and local compactness in chapter 4.
Problem 1. Interpret two of the problems from homeworks 1 and 2 as secretly being statements about compactness. Rewrite the statements using the word "compactness".

Problem 2. Use one of the problems in Homework 2 to prove that, if $\left\{X_{\alpha}\right\}_{\alpha \in A}$ is any family of compact spaces, then $\prod X_{\alpha}$ is compact. (This is called Tychonoff's theorem). Use a homework problem from Homework 4 to give a very strange proof that the unit interval [0,1] is compact.

Problem 3 (Problem 4-23).
Problem 4 (Problem 4-25).
Problem 5. (a) Let $C \subseteq E$ be a closed subspace of a compact Hausdorff space. Show that E / C is (homeormorphic to) the one-point compactification of $E-C$.
(b) If A and B are spaces with distinguished points a and b respectively, define

$$
A \wedge B:=(A \times B) /(A \times\{b\} \cup\{a\} \times B)
$$

If X and Y are locally compact Huasdorff spaces, prove that

$$
(X \times Y)^{+} \cong X^{+} \wedge Y^{+}
$$

where we use the points at ∞ as the distinguished points. (In particular, if V and W are finite-dimensional vector spaces then

$$
(V \oplus W)^{+} \cong V^{+} \wedge W^{+} .
$$

Some authors write $S^{V}=V^{+}$since V^{+}is homeomorphic to a sphere of dimension equal to $\operatorname{dim}_{\mathbb{R}}(V)$, and then we get $S^{V} \wedge S^{W} \cong S^{V \oplus W}$. For example, $S^{n} \wedge S^{m} \cong S^{n+m}$.)
(c) Let $\operatorname{Gr}_{k}\left(\mathbb{R}^{n+k}\right)$ denote the space of k-dimensional (linear) subspaces of \mathbb{R}^{n+k}. Here we regard this as a topological space using the quotient topology for the map

$$
\mathrm{GL}_{n+k}(\mathbb{R}) \rightarrow \operatorname{Gr}_{k}\left(\mathbb{R}^{n+k}\right)
$$

sending a matrix to the span of its first k columns. Define

$$
E_{k, n}=\{(V, x): x \in V\} \subseteq \operatorname{Gr}_{k}\left(\mathbb{R}^{n+k}\right) \times \mathbb{R}^{n+k}
$$

Prove that $E_{k}^{+} \cong \operatorname{Gr}_{k}\left(\mathbb{R}^{n+k+1}\right) / \operatorname{Gr}_{k-1}\left(\mathbb{R}^{n+k}\right)$. Here we make sense of the latter quotient using the closed embedding

$$
\operatorname{Gr}_{k-1}\left(\mathbb{R}^{n+k}\right) \hookrightarrow \operatorname{Gr}_{k}\left(\mathbb{R}^{n+k+1}\right)
$$

given by $V \mapsto V \oplus \mathbb{R}$. As a special case, show that

$$
E_{1, n}^{+} \cong \mathbb{R} P^{n+1}
$$

(Hint: It may help to think about the graph of the function $\langle x,-\rangle: V \rightarrow \mathbb{R}$.)
Problem 6. Without using Tychonoff's theorem, prove directly that a countable product of second-countable, compact spaces is compact. (Hint: Prove that this product is second-countable and then use a criterion for checking compactness on such spaces from the textbook.)

