Math 581 Homework 4

April 21, 2022

Read the rest of Chapter 3.
Problem 1 (Problem 3-14 and 3-15).
Problem 2 (Problem 3-16).
Problem 3 (Problem 3-17).
Exercise 4. Consider the following commutative diagram of spaces and continuous functions.

(i) Prove that embeddings, quotients, and homeomorphisms are closed under composition.
(ii) Prove that if h is an embedding then so is g.
(iii) Prove that if h is a quotient map then so is f.
(iv) Prove that if any two out of the three functions f, g, and h are homeomorphisms, then so is the third.

Problem 5. Construct a homeomorphism $\mathrm{SO}(3) \cong \mathbb{R} P^{3}$. (Here $\mathrm{SO}(3)$ denotes the space of 3×3 matrices A such that $\operatorname{det}(A)=1$ and $A^{T} A=I$. In other words: the space of rotations in 3 -space).

Problem 6. Let $X=\prod_{i=1}^{\infty}\{0,1\}$ with the product topology (where each $\{0,1\}$ has the discrete topology).
(i) Show that the function $q: X \rightarrow[0,1]$ given by the formula

$$
q\left(\left(a_{i}\right)\right)=\sum_{i \geqslant 1} a_{i} 2^{-i}
$$

is well-defined (i.e. that the sum converges and lands in the indicated interval), continuous, and surjective.
(ii) Prove that q is a quotient map. (Hint: try proving something stronger.)

Problem 7. We say that a square of spaces

is a pushout if the resulting map

$$
A^{\prime} \cup_{A} B \rightarrow B^{\prime}
$$

is a homeomorphism.
(a) Show that a square as above is a pushout square if and only if it satisfies the following universal property: given any other square

there is a unique map $B^{\prime} \rightarrow C$ making the evident diagram commute. (Part of the exercise is to determine 'the evident diagram').
(b) Suppose we are given a diagram

and suppose that the leftmost square is a pushout. Prove that the rightmost square is a pushout if and only if the outer rectangle is a pushout.
(c) Given a space X, we say that another space X^{\prime} is obtained from X by attaching an n-cell if we are given $X \rightarrow X^{\prime}$ fitting into a pushout square

where the left vertical arrow is the canonical inclusion. Construct a homeomorphism $X^{\prime} / X \cong S^{n}$. (Here \mathbb{D}^{n} denotes the closed unit disk in \mathbb{R}^{n} and S^{n} denotes the n dimensional sphere, e.g. the unit vectors in \mathbb{R}^{n+1}).
(d) Prove that $\mathbb{R} P^{n+1}$ is obtained from $\mathbb{R} P^{n}$ by attaching an $(n+1)$-cell, and that $\mathbb{C} P^{n+1}$ is obtained from $\mathbb{C} P^{n}$ by attaching a $(2 n+2)$-cell. Deduce that we have homeomorphisms

$$
\mathbb{R} P^{n} / \mathbb{R} P^{n-1} \cong S^{n}, \quad \mathbb{C} P^{n} / \mathbb{C} P^{n-1} \cong S^{2 n}
$$

Problem 8 (Problem 3-19).
Problem 9 (Problem 3-20).

