Math 581 Homework 2

April 13, 2022

Read Chapter 2 of Lee's Introduction to Topological Manifolds.

Problem 1 (Problem 2-5).

Problem 2 (Problem 2-10).

Problem 3 (Problem 2-12).

Problem 4 (Problem 2-20).

Problem 5 (Problem 2-25).

Problem 6. Let X be a topological space and \mathcal{B} a subbasis for the topology on X. Prove that the following statements are equivalent:

- (1) For every collection \mathcal{U} of open subsets of X such that $\bigcup \mathcal{U} = X$, there is a finite subcollection $U_1, ..., U_n$ so that $X = U_1 \cup \cdots \cup U_n$.
- (2) For every collection $\mathcal{U} \subseteq \mathcal{B}$ such that $\bigcup \mathcal{U} = X$, there is a finite subcollection $U_1, ..., U_n$ so that $X = U_1 \cup \cdots \cup U_n$.

Hint: For $(2) \Rightarrow (1)$, argue by contradiction, assuming \mathcal{U} is a maximal counterexample to the statement in (1). Find a point outside of $\bigcup \mathcal{B} \cap \mathcal{U}$ and append various subbasis neighborhoods of that point to \mathcal{U} ; extract consequences from maximality and try to get a contradiction.