Math 581 Homework 1

April 6, 2022

Read the Introduction, Appendix A, and Appendix B of Lee's Introduction to Topological Manifolds.

Exercise 1. Consider the commutative diagram

(i) Prove that if f and g are injective/surjective/bijective then h is also injective/surjective/bijective.
(ii) Prove that if h is injective then so is g.
(iii) Prove that if h is surjective then so is f.
(iv) Prove that if any two out of the three functions f, g, and h are bijective, then so is the third.
(v) Give an example where h is injective but f is not.
(vi) Give an example where h is surjective but g is not.

Problem 2. Let M be a metric space. Prove:
(a) M and \varnothing are open.
(b) Finite intersections of open subsets of M are open.
(c) Arbitrary unions of open subsets of M are open.

Problem 3. Let M be a metric space.
(a) Show that open balls are open and closed balls are closed.
(b) Show that a subset of M is open if and only if it is a union of some collection of open balls.

Problem 4. Prove that the following are equivalent for a metric space M.
(i) Every Cauchy sequence converges.
(ii) Given a sequence of nonempty closed subsets

$$
J_{0} \supseteq J_{1} \supseteq J_{2} \supseteq \cdots
$$

with diameters converging to zero, the intersection $\bigcap_{i \geqslant 0} J_{i}$ is nonempty.
Problem 5. Let M be a metric space. Show that the following are equivalent.
(i) For every collection \mathcal{U} of open subsets of M such that $\bigcup_{U \in \mathcal{U}} U=M$, there is a finite subcollection $U_{1}, \ldots, U_{n} \in \mathcal{U}$ such that

$$
M=U_{1} \cup \cdots \cup U_{n} .
$$

(ii) If $J_{0} \supseteq J_{1} \supseteq \cdots$ is a sequence of nonempty closed sets, then $\bigcap_{i \geqslant 0} J_{i}$ is nonempty.
(iii) Every sequence has a convergent subsequence.
(iv) M is complete and, for every $\varepsilon>0$, there is a finite collection of open balls of radius ε whose union is M.

Hints: For $(i i i) \Rightarrow(i v)$, if there is an ε for which no finite collection of balls suffices, inductively build a sequence of points that are all at least ε far apart from one another. For $(i v) \Rightarrow(i)$, do a proof by contradiction. Prove that for any finite collection of opens covering M, one of the opens must fail to be covered by finitely many of the sets in \mathcal{U}. Apply this observation to the finite covers of M guaranteed by the hypothesis with $\varepsilon=\frac{1}{2^{n}}$.

