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1 Categories and functors

Definition 1.1. A category C consists of:

• A class1 of objects obpCq. We write X P C to mean X P obpCq.

• For each pair X, Y P C a set2 of morphisms HomCpX, Y q. We write f : X Ñ Y to
indicate that f P HomCpX, Y q is a morphism from X to Y .

• for each triple X, Y, Z P C a function

˝ : HomCpY, Zq ˆ HomCpX, Y q Ñ HomCpX,Zq

1A category is called small if it has a set of objects and a set of morphisms, rather than a class.
2Technically this is the definition of a ‘locally small category’. Occasionally we will consider categories

with classes of morphisms (can you spot when that happens?), and if one goes further in the subject one
has to get concerned about issues of set theory at various points. There are solutions to all these concerns,
and I will ignore set theory in this note.
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written
pf, gq ÞÑ f ˝ g

• For each object X, a distinguished morphism idX P HomCpX,Xq.

This data is subject to the following requirements:

• Composition is associative: pf ˝ gq ˝ h “ f ˝ pg ˝ hq whenever these expressions make
sense.

• The element idX is a unit for composition: idX ˝ f “ f and g ˝ idX “ g whenever these
expressions make sense.

Definition 1.2. We say that a morphism f : X Ñ Y in C is an isomorphism if there is a
morphism g : Y Ñ X such that f ˝ g “ idY and g ˝ f “ idX . In this case we say that g is
an inverse for f .

Exercise 1.3. Prove that if f is an isomorphism then it has a unique inverse.

Definition 1.4. A functor F : CÑ D consists of

• an assignment of an object F pXq P D for each X P C.

• an assignment of a morphism F pfq : F pXq Ñ F pY q for each morphism f : X Ñ Y in
C.

such that
F pf ˝ gq “ F pfq ˝ F pgq

whenever this makes sense.

Definition 1.5. Let F,G : C Ñ D be functors. A natural transformation η : F Ñ G
is an assignment of a morphism ηX : F pXq Ñ GpXq for all X P C such that, for every
f : X Ñ Y in C, the diagram

F pXq
ηX //

F pfq

��

GpXq

Gpfq

��
F pY q ηY

// GpY q

commutes. We say that η is a natural isomorphism if there is a natural transformation
ρ : GÑ F such that η ˝ ρ and ρ ˝ η are the identity transformations.

A useful fact is that you can check whether a natural transformation is a natural isomor-
phism ‘pointwise’.

Lemma 1.6. Let η : F Ñ G be a natural transformation. Then η is a natural isomorphism
if and only if ηX : F pXq Ñ GpXq is an isomorphism in D for all X P C.

2



Proof. One direction is clear. So suppose ηX : F pXq Ñ GpXq is an isomorphism. For each
X P C, let ρX be the inverse to ηX . I claim that ρ is natural. If f : X Ñ Y is a morphism in C

we need to check that F pfq˝ρX “ ρY ˝Gpfq. To prove this, begin with ηY ˝F pfq “ Gpfq˝ηX ,
then compose on the left with ρY and on the right with ρX .

There is an evident notion of an isomorphism of categories, but more flexible is:

Definition 1.7. We say that a functor F : CÑ D is an equivalence of categories if there
exists a functor G : DÑ C such that FG is naturally isomorphic to idD and GF is naturally
isomorphic to idC.

Theorem 1.8. A functor F : C Ñ D is an equivalence of categories if and only if the
following two conditions hold:

(i) F is fully faithful: this means that the induced function

HomCpX, Y q Ñ HomDpFX,FY q

is a bijection.

(ii) F is essentially surjective: this means that, given any object d P D there exists an
object c P C and an isomorphism F pcq – d.

Moreover, if F : C Ñ D satisfies the above two conditions, then the inverse equivalence is
unique in the following sense: given G,G1 : D Ñ C and natural isomorphisms FG Ñ id
and FG1 Ñ id that are part of the data of an equivalence, there exists a unique isomorphism
G – G1 compatible with these transformations.

Proof. Let E be the category whose objects are triples pc, d, αq where α : F paq – d is an
isomorphism in D. A morphism is given by morphisms cÑ c1, dÑ d1 such that

F pcq

��

// d

��
F pc1q // d1

commutes.
The functor F factors as

C
j //

F ��

E

p
��
D

where jpcq “ pc, F pcq, idF pcqq and pppc, d, αqq “ d. We will show that j and p are equivalences
of categories, which implies the claim.

Let r : E Ñ C be defined by pc, d, αq ÞÑ c. Then r ˝ j “ idC. On the other hand, I claim
that j ˝ r – idD. Indeed, define a natural transformation by

ηpc,d,αq : pc, F pcq, idF pcqq Ñ pc, d, αq
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by the morphism in E specified by the pair idc : c Ñ c and α : F pcq Ñ d. This is a natural
isomorphism. (Notice the fact that j was an equivalence did not use any hypotheses about
F ; it’s always true.)

It remains to prove that p is an equivalence. By (ii) we may choose, for each d P D, some
c P C and isomorphism α : F pcq Ñ d. This defines a function s : obpDq Ñ obpEq. Given a
morphism d Ñ d1, the surjectivity part of (i) allows us to choose a morphism c Ñ c1 whose
image under F is the composite

F pcq – dÑ d1 – F pc1q.

This gives an assignment s : D Ñ E on objects and morphisms. That composition is
preserved follows from the injectivity assumption in (i).

The uniqueness follows from ‘uniqueness of adjoints’ proven below.

2 Limits and colimits

Definition 2.1. Let X : K Ñ C be a functor and let c P C be an object together with maps
fi : Xpiq Ñ c such that, for every iÑ j in K, the diagram

Xpiq

!!

��

c

Xpjq

==

commutes. We say that the morphisms fi exhibit c as the colimit of X if, for any
other object d P C equipped with morphisms gi : Xpiq Ñ d making the diagrams as above
commute, there exists a unique morphism h : c Ñ d with the property that h ˝ fi “ gi for
all i P K. We sometimes summarize this with a picture like so:

Xpiq

!!

��

��
c

! // d

Xpjq

== BB

Definition 2.2. Let X : K Ñ C be a functor and let c P C be an object together with maps
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fi : cÑ Xpiq such that, for every iÑ j in K, the diagram

Xpiq

��

c

!!

==

Xpjq

commutes. We say that the morphisms fi exhibit c as the limit of X if, for any other
object d P C equipped with morphisms gi : dÑ Xpiqmaking the diagrams as above commute,
there exists a unique morphism h : d Ñ c with the property that fi ˝ h “ gi for all i P K.
We sometimes summarize this like so:

Xpiq

��

d

11

--

! // c

!!

==

Xpjq

Remark 2.3. We like to map in to limits and we like to map out of colimits.

Remark 2.4. One way to package the data of the maps Xpiq Ñ c above is that we have
a natural transformation X Ñ δpcq where δpcq : K Ñ C is the constant functor at c, i.e.
δpcqpiq “ c and δpcq sends every morphism to idc. Said this way, X Ñ δpcq exhibits c as a
colimit if, for every other natural transformation f : X Ñ δpdq there is a unique map cÑ d
such that X Ñ δpcq Ñ δpdq is f .

Theorem 2.5. Limits and colimits are unique up to unique isomorphism compatible with
structure maps. That is: if tfi : Xpiq Ñ cu and tf 1i : Xpiq Ñ c1u exhibit c and c1 as colimits
of X, then there is a unique isomorphism h : cÑ c1 such that h ˝ fi “ f 1i for all i.

Proof. By definition we are guaranteed unique maps h : c Ñ c1 and g : c1 Ñ c such that
h ˝ fi “ f 1i and g ˝ f 1i “ fi for all i. The map g ˝ h : cÑ c has the property that

pg ˝ hq ˝ fi “ g ˝ ph ˝ fiq “ g ˝ f 1i “ fi

for all i. But so does the morphism idc. By the uniqueness clause in the definition of a
colimit, we conclude that g ˝ h “ idc. Similarly, h ˝ g “ idc1 . Thus h is the sought after
isomorphism.
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3 Adjoint functors

Definition 3.1. Let F : CÑ D and G : DÑ C be functors. We say that F is left adjoint
to G and that G is right adjoint to F if there is a natural isomorphism

HomDpFX, Y q – HomCpX,GY q

of functors Cop ˆDÑ Set.

Theorem 3.2 (Uniqueness of adjoints). Let F : C Ñ D be a functor and G,G1 : D Ñ C be
functors together with chosen natural isomorphisms

α : HomDpFX, Y q – HomCpX,GY q

α1 : HomDpFX, Y q – HomCpX,G
1Y q

Then there is a unique natural isomorphism β : GÑ G1 compatible with α and α1.

Proof. The Yoneda lemma (see below) supplies isomorphisms between GY and G1Y for each
Y , and one checks that these are natural in Y .

Theorem 3.3. Left adjoints preserve colimits and right adjoints preserve limits. More for-
mally: if X : K Ñ C is a diagram and tfi : Xpiq Ñ cu exhibits c as a colimit of X, then
tF pfiq : FXpiq Ñ F pcqu exhibits F pcq as a colimit of F ˝X.

Proof. By duality it is enough to prove the claim about colimits.
Suppose we are given tgi : F pXpiqq Ñ du making the usual diagrams commute. By

adjunction, this is the same data as giving maps

ĝi : Xpiq Ñ Gpdq

such that, for all iÑ j, the diagrams

Xpiq

��

##
Gpdq

Xpjq

;;

commute. By the definition of a colimit, there is then a unique morphism ĥ : c Ñ Gpdq
compatible with the structure maps above. This then produces a map h : F pcq Ñ d by
adjunction. This is the desired map.
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4 Examples of categories

Example 4.1. The typical examples consist of ‘sets equipped with extra structure, and
functions which preserve this structure’:

• Set: sets and functions.

• Grp: groups and group homomorphisms.

• Ab: abelian groups and group homomorphisms.

• VectR: (real) vector spaces and linear maps.

• Top: topological spaces and continuous maps.

• Top˚: pairs pX, x0q where X is a space and x0 P X is a distinguished point, and
continuous maps f : X Ñ Y such that fpx0q “ y0.

• hTop: topological spaces and homotopy classes of maps.

• hTop˚: pointed spaces and pointed homotopy classes of pointed maps.

Example 4.2. Other examples are often used as ‘diagrams’, i.e. as the domain of functors
we want to take limits or colimits of.

• ∅: empty.

• Any set S can be regarded as a category with only identity morphisms.

• More generally, any poset P can be regarded as a category with set of objects P and
where HomP px, yq has one object if x ď y and is empty otherwise. (The previous
example is the case of posets where every distinct pair of objects is incomparable.)
Two special cases come up a lot: one is the poset

0 01 //oo 1

and the other is the poset Zě0.

• Any monoid M (i.e. set equipped with a unital, associative binary operation) gives
rise to a category with one object ‚ and morphism set M (where id‚ is the unit in M).
This category is denoted BM .

• The category ∆ whose objects are nonempty, finite linearly ordered sets and whose
morphisms are order-preserving functions. We denote by ∆ďn the category defined the
same way but with objects those linearly ordered sets of size at most n ` 1. (That’s
unfortunately not a typo... it is the convention to count the ‘arrows’ in the depiction
of a nonempty linearly ordered set rather than the objects.)
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Example 4.3. If C is a category and we are given any subset S Ď obpCq we can define a
new category D whose objects are those of S and with HomDpX, Y q “ HomCpX, Y q. This
is called the full subcategory spanned by S. More generally, if we take a sub-collection
of objects and sub-collection of morphisms which are closed under composition and contain
identity maps, this is called a subcategory of C.

Example 4.4. If C is a category then we can define a new category Cop with the same
objects but with

HomCoppX, Y q :“ HomCpY,Xq.

Many constructions and theorems come in two flavors and one can pass statements and
proofs from one flavor to the other by considering opposite categories. This is called duality.

Example 4.5. If tCiu is a set of categories then there is an evident notion of
š

Ci and
ś

Ci
with objects as indicated.

Example 4.6. If C and D are categories, we can build a new category FunpC,Dq whose
objects are functors and whose morphisms are natural transformations. Notice that, by
Lemma 1.6, we can check whether a morphism in FunpC,Dq is an isomorphism by evaluating
the source and target at each element of C. When C is one of the previous examples,
FunpC,Dq a ‘category of diagrams’ of some fixed shape in D. The previous example of a
product of categories is recovered by taking C “ S a set.

Example 4.7 (Presheaves). A very important special case of the previous example gets
singled out with a special name. We define

PshpCq :“ FunpCop, Setq.

There is a functor
y : CÑ PshpCq

given by the formula
ypcqpxq “ HomCpx, cq.

This functor is called the Yoneda embedding (in a moment we will see that it is fully
faithful). We regard presheaves as ‘generalized objects of C’. When building objects of C it
is often convenient to break up this task into two parts: first build an object in PshpCq and
then check it lies in the essential image of the Yoneda embedding.

Theorem 4.8 (The Yoneda Lemma). Let F P PshpCq be a presheaf and let c P C be arbitary.
Then the function

HomPshpCqpypcq,Fq Ñ Fpcq

given by η ÞÑ ηcpidcq is a bijection. In particular, y is fully faithful.

Definition 4.9. We say that a presheaf F P PshpCq is representable if it lies in the essential
image of y. If F – ypcq we say that c represents F.
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Corollary 4.10. Let PshreppCq Ď PshpCq be the full subcategory spanned by the representable
functors. Then the Yoneda embedding factors through an equivalence C » PshreppCq.

Example 4.11. Let X : K Ñ C be a diagram, and consider the presheaf ĂlimKX

c ÞÑ HomFunpK,Cqpδpcq, Xq

where δ : C Ñ FunpK,Cq sends an object to the corresponding constant diagram. Then X

has a limit if and only if ĂlimKX is representable (in which case any choice of limit provides
a representing object).

Example 4.12. A functor F : CÑ D admits a right adjoint if and only if the functor

DÑ PshpCq

given by d ÞÑ pc ÞÑ HomCpFc, dqq factors through the full subcategory of representable
presheaves. This observation implies that a right adjoint to F is essentially unique if it
exists (in the same sense that the inverse to an equivalence of categories is unique if it
exists).

Example 4.13. The functor
Openp´q : Topop Ñ Set

sending a topological space to its set of open subsets (with functoriality given by taking
preimages) is representable. What is the representing object?

5 Examples of functors

Example 5.1. π1 : Top˚ Ñ Grp is a functor, and it factors through hTop˚.

Example 5.2. All of the prototypical first examples of categories (Example 4.1) admit a
functor

U : CÑ Set

which ‘forgets’ any added structure. The letter U stands for ‘underlying’; this functor is
usually called a forgetful functor -though sometimes that terminology is reserved only for
the algebraic examples. With the exception of Top and Top˚, the forgetful functor has the
property that it is conservative which means that f : X Ñ Y is an isomorphism if and
only if Upfq is an isomorphism. This is one of the ways that ‘algebra’ behaves differently
than ‘geometry’.

Example 5.3. If L and P are posets regarded as categories then a functor f : L Ñ P is
precisely an order-preserving function.

Example 5.4. Any group homomorphism φ : GÑ H gives rise to a functor BGÑ BH by
applying φ to the morphisms.
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We defined (co)limits only up to unique isomorphism, but in practice we behave as if
‘taking a limit’ is a well-defined construction. This is justified by the following theorem
(which of course has a dual statement for colimits).

Theorem 5.5. Let Fun1pK,Cq Ď FunpK,Cq denote the full subcategory of diagrams whose
limit exists. Then there is a functor

lim
K

: Fun1pK,Cq Ñ C

equipped with a natural transformation ε : δ ˝ lim Ñ id such that, for every X P Fun1pK,Cq,
the maps

tεj : lim
K
X Ñ Xpjqu

exhibit the source as a limit of X. When Fun1pK,Cq “ FunpK,Cq, the functor limK is right
adjoint to the diagonal δ.

Proof. First define a functor
FunpK,Cq Ñ PshpCq

by
X ÞÑ pc ÞÑ HomFunpK,Cqpδpcq, Xqq.

Now conclude by examining the diagram:

Fun1pK,Cq //

��

**PshreppCq

��

C
»
oo

FunpK,Cq // PshpCq

6 Examples of (co)limits

Example 6.1. If K “ ∅ there is only one diagram of shape K. A colimit over the empty
set in C is called an initial object, and a limit over the empty set in C is called a final
object. For example:

(i) The initial object in Set is ∅. Any singleton set is a final object in Set.

(ii) The initial object in Grp is the trivial group teu; this is also the final object. The same
is true in Ab and VectR.

(iii) If P is a poset then an element is initial if and only if it is an absolute minimum and
final if and only if it is an absolute maximum.
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Example 6.2. If K “ S is a set, then a diagram X : S Ñ C is just the data of a collection
of objects tXsusPS. A colimit for this diagram is called a coproduct and denoted

ž

sPS

Xs.

Similarly, a limit is called a product and denoted
ś

sPS Xs. For example:

(i) Coproducts in Set are disjoint unions. Products are cartesian products.

(ii) Products in Grp and Ab are usual products. Coproducts in Grp are somewhat compli-
cated and sometimes called ‘amalgamated products’, denoted G˚H. Coproducts in Ab
are direct sums (so finite coproducts coincide with products), and similarly in VectR.

(iii) If P is a poset then a coproduct of some subset of P is a least upper bound, while a
product of some set of elements is a greatest lower bound.

Example 6.3. A diagram indexed on ‚ Ñ ‚ is just a map X Ñ Y in C. The colimit of
such a diagram is Y and the limit is X. More generally, if K admits a final object 1 then
a colimit for F : K Ñ C always exists and is given by F p1q. Dually, if K admits an initial
object 0 then then a limit for F : K Ñ C always exists and is given by F p0q. (Be careful
about the possibly confusing mismatch of initial objects of K- a colimit- with the limit of a
diagram indexed on K, etc.)

Example 6.4. If M is a monoid, then a diagram X : BM Ñ C is the same information as
an object Xp‚q P C together with a map of monoids M Ñ HomCpX,Xq; i.e. an action of M
on X. We denote colimits and limits for this diagram by

XM , and XM

respectively, and call them orbits and fixed points for the action of M . Sometimes the
first of these is denoted X{M instead.

Example 6.5. When K “ ∆ď1 then a functor X : ∆op
ď1 Ñ C is equivalent to the data of

three maps

R

d0 //

d1
//
Y

s0oo

satisfying the identities d0s0 “ d1s0 “ idY . A colimit for such a diagram is called a reflexive
coequalizer, sometimes denoted

coeq

¨

˝R

d0 //

d1
//
Y

s0oo

˛

‚.

It is a generalization of a ‘quotient by an equivalence relation.’ Dually, we can consider
diagrams X : ∆ď1 Ñ C whose limits are called reflexive equalizers.

Actually, the map s0 turns out not to be so relevant here: you get an equivalent (co)limit
if you consider just the ‘fork’.
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Example 6.6. If K is the poset
0 Ð 01 Ñ 1

then a diagram X : K Ñ C looks like

X01
//

��

X1

X0

and a colimit is called a pushout or sometimes the cobase change of X01 Ñ X0 along
X0 Ñ X1. Dually, given a diagram X : Kop Ñ C a limit is called a pullback or sometimes
a base change.

Example 6.7. If K corresponds to the poset Zě0 then a diagram X : Zě0 Ñ C is just a
sequence of maps

X0 Ñ X1 Ñ ¨ ¨ ¨

and a colimit is called a sequential colimit. (Confusingly, in older literature, this is refereed
to as an ‘inductive limit’ or ‘direct limit’, both of which use the word ‘limit’ even though
this is a colimit.) Similarly, we have limits for diagrams X : Zop

ě0 Ñ C which are sequential
limits (and again in older literature have funny names like ‘projective limit’.)

Incidentally, all colimits can be built out of coproducts and coequalizers if they exist.

Theorem 6.8. A category C has all (small) colimits if and only if it has reflexive coequalizers
and all (small) coproducts. In this case, if X : K Ñ C is a diagram then

colim
K

X “ coeq

¨

˝

ž

f :iÑj

Xi
//
//
ž

k

Xk
oo

˛

‚.

Dually:

Theorem 6.9. A category C has all (small) limits if and only if it has reflexive equalizers
and all (small) products. In this case, if X : K Ñ C is a diagram then

lim
K
X “ eq

¨

˝

ź

k

Xk
//
//
ź

f :iÑj

Xj
oo

˛

‚.

Another important example of a colimit is the ‘canonical presentation’ of presheaves by
representable presheaves.

Theorem 6.10. Let C be a small category and X P PshpCq a presheaf. Denote by C Ó X the
category whose objects are pairs pC, xq where C P C and x P XpCq, and where a morphism
pC, xq Ñ pC 1, x1q consists of a map f : C Ñ C 1 such that Xpfqpx1q “ x. Consider the
diagram:

C Ó X Ñ C
y
Ñ PshpCq

Then
X “ colim

pC,xqPCÓX
ypCq.
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7 Examples of adjoint functors

Example 7.1 (Free and forget). The functor Freegp : Set Ñ Grp, sending a set to the free
group on that set, is left adjoint to the forgetful functor U : GrpÑ Set. That is: the datum
of a group homomorphism FX Ñ G is the same as the datum of a function between sets
X Ñ G.

Similarly, there is a functor Zr´s : SetÑ Ab which assigns, to each set, the free abelian
group on that set. The groups ZrXs and FreegppXq almost never coincide, the exceptions
being X “ ∅ and |X| “ 1.

It is also worth pointing out that the forgetful functors in each case do not admit right
adjoints because these forgetful functors do not preserve colimits. Actually, they preserve
some colimits but not others: the forgetful functors here preserve reflexive coequalizers but
do not preserve coproducts. Similarly, each of the free functors do not preserve limits and
hence do not admit left adjoints.

Example 7.2 (Abelianization). The embedding AbÑ Grp admits a left adjoint (but not a
right adjoint) denoted p´qab : GrpÑ Ab and computed by the formula:

Gab “ G{rG,Gs, rG,Gs “ tghg´1h´1 : g, h, P Gu.

Unwinding the definitions, we learn that the map GÑ Gab is initial amongst all homomor-
phisms out of G with target an abelian group. More precisely: given any homomorphism
φ : G Ñ A where A is abelian, there exists a unique homomorphism Gab Ñ A such that
the composite G Ñ Gab Ñ A is φ (i.e. a unique factorization of φ through the projection
GÑ Gab).

Example 7.3 (Posets). If f : L Ñ M is an order-preserving function between posets,
regarded as a functor, then we can ask: when is it the case that f admits a left or right
adjoint? In order for f to be a left adjoint, then for every y P M we must have an element
gpyq P L with the property that fpxq ď y if and only if x ď gpyq. In other words, we are
forced to define:

gpyq “ maxpx : fpxq ď yq.

So f admits a right adjoint if and only if each of these maxima actually exist (notice also
that each of these is an example of a colimit). Similarly, f admits a left adjoint if and only
if each of the minima

minpx : y ď fpxqq

exist (in which case this would be the value of the left adjoint at x).

Example 7.4 (Geometric realization). If J is a finite, linearly ordered set then let ∆J Ď RJ

denote the subset of those functions x : J Ñ R with nonnegative values which sum to 1.
When J “ rns :“ r0 ă 1 ă ¨ ¨ ¨ ă ns we denote this by ∆n. For every order-preserving
function f : J Ñ J 1 we can define a continuous function

f˚ : ∆J
Ñ ∆J 1
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by f˚ppxjqq` “
ř

jPf´1p`q xj, where we interpret the empty sum as 0. This gives a functor

∆‚ : ∆ Ñ Top

Now we define a category sSet :“ Funp∆op, Setq called the category of simplicial sets, and a
functor

Sing‚ : Top ÝÑ sSet

defined as the composite

Top
y
ÝÑ FunpTopop, Setq Ñ Funp∆op, sSetq “ sSet.

Explicitly:
Sing‚pY q “ HomTopp∆

J , Y q.

This functor is a right adjoint, and its left adjoint is denoted by

| ´ | : sSet ÝÑ Top

and called geometric realization. An explicit formula for it is as follows:

|X‚| “

˜

ž

f :JÑJ 1

∆J
ˆXJ 1

¸

{pf˚a, bq „ pa, f
˚bq.
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