
Modular Arithmetic Handout

November 14, 2022

(1) In class I find myself saying something like this a lot:

“And this number is 5 times something, we don’t care what- it’s divisible by 5.”

In this handout we’ll learn a method for systematically ignoring multiples of some number.
Here is the key definition:

Definition 1.1. Let m ě 1 be a fixed integer. If a, b P Z we say that a is congruent to b
modulo m if a´ b is divisible by m. In this case we write:

a ” b mod m

which is read aloud as ‘a is equivalent/congruent to b mod m’.

Example 1.2. Here are some examples.

2 ” 10 mod 8 because 2´ 10 “ ´8 “ 8 ¨ p´1q

12 ” ´3 mod 5 because 12´ p´3q “ 15 “ 5 ¨ 3

4` 3 ” 4 mod 3 because 4` 3´ 4 “ 3 “ 3 ¨ 1

Exercise 1.3. Write down a few integers which are congruent to 1 modulo 17. Try to have
both positive and negative examples.

Exercise 1.4. Prove that a ” b mod m if and only if a and b leave the same remainder upon
division by m.

Warning 1.5. In computer science ‘a mod m’ means the remainder of a upon division by
m. That is not what it means in mathematics. That remainder is just one of many different
numbers which are equivalent to a modulo m.

Despite the warning, when we say something like

“Compute 14658 modulo 7”
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we usually mean to find this remainder, or some small number equivalent to 14657 modulo
7. The remainder is sometimes called the standard representative. In this example, we
have

14657 ” 6 mod 7

But another reasonable answer (sometimes more useful) is:

14657 ” ´1 mod 7

(2) The thing that makes ‘working modulo m’ so convenient is that we can do arithmetic
in this world. Let’s do an example before we see the general result.

Example 2.6. We’ll work modulo 12. Then 15 ” 3 mod 12 and ´16 ” 8 mod 12. Let’s
compute products and sums and see what happens:

15 ¨ p´16q “ ´240

“ 12 ¨ p´20q ” 0 mod 12

3 ¨ 8 “ 24

“ 12 ¨ 2 ” 0 mod 12

We got the same answer, modulo 12; but the second calculation was a lot easier. How about
sums?

15` p´16q “ ´1

8` 3 “ 11

” ´1 mod 12

Again, the same answer modulo 12. Below we’ll see this is no accident.

Lemma 2.7. Let a, a1, b, and b1 be integers and let m ě 1 be an integer. Suppose that

a ” a1 mod m

b ” b1 mod m

Then

a` b ” a1 ` b1 mod m

ab ” a1b1 mod m

and, for any n ě 0,

an ” pa1qn mod m
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Proof. By assumption, we can find numbers q and k so that

a´ a1 “ mq, b´ b1 “ mk

Then:

pa` bq ´ pa1 ` b1q “ a´ a1 ` b´ b1

“ mq `mk

“ mpq ` kq

hence m divides pa` bq ´ pa1 ` b1q. By definition, that means

a` b ” a1 ` b1 mod m,

which proves the first claim.
For the second claim, compute:

ab´ a1b1 “ ab´ ab1 ` ab1 ´ a1b1

“ apb´ b1q ` pa´ a1qb1

“ apmkq ` pmqqb1

“ mpak ` qb1q

Thus m divides ab´ a1b1. By definition, that means

ab ” a1b1 mod m

and that completes the proof.
The third claim is a homework exercise!

Exercise 2.8. Immediately compute the remainder of

11167253947

upon division by 12.

(3) The next phenomenon is a neat thing gained by working modulo a number.

Example 3.9. The integer 5 has no multiplicative inverse that’s an integer. In other words:
there is no integer n such that

5 ¨ n “ 1

On the other hand, if we work modulo 11, then

5 ¨ 9 “ 45 ” 1 mod 11

So sometimes there are multiplicative inverses when working modulo some number.
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Here’s the general story.

Proposition 3.10. Let m ě 1 be fixed and suppose a is an integer. Then a has a multiplica-
tive inverse modulo m if and only if gcdpa,mq “ 1 (i.e. if and only if a and m are relatively
prime).

Proof. We want to solve the ‘equation’:

ax ” 1 mod m

There is a solution if and only if there is a number x where

ax´ 1

is divisible by m. In other words, there is a solution if and only if we can find x and z such
that

ax´ 1 “ mz

In other words, if and only if
ax´mz “ 1

has a solution. Substituting y “ ´z, this is true if and only if

ax`my “ 1

has a solution. We have already seen that’s true if and only if gcdpa,mq “ 1.

This actually gives us a procedure for finding multiplicative inverses!

• Given a and m, run the Euclidean algorithm.

• If gcdpa,mq ‰ 1, then there is no multiplicative inverse, so you can stop.

• Otherwise, run the reverse Euclidean algorithm to find x and y with

ax`my “ 1

Then x is an example of a multiplicative inverse for a, modulo m.

Exercise 3.11. Find multiplicative inverses for...

(i) 17 modulo 124

(ii) 24 modulo 25 (there’s a trick to do this fast, can you spot it?)

(iii) 60 modulo 77

(4) We end with a trick for computing powers of an integer modulo some other integer. It’s
very useful!
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Theorem 4.12 (Euler’s theorem). Let φpmq denote the number of positive integers less than
m which are relatively prime to m. Suppose a is relatively prime to m. Then

aφpmq ” 1 mod m

Before giving the proof, we’ll give a corollary and a few examples.

Corollary 4.13 (Fermat’s little theorem). Let p be prime and a a number relatively prime
to p. Then

ap´1 ” 1 mod p

Example 4.14. Let’s compute 456 modulo 7. We have:

456
“ 454

¨ 42

“ p46
q
9
¨ 42

” 19
¨ 42 mod 7

” 16 mod 7

” 2 mod 7

Notice that, in order to compute 456 modulo 7, we become interested in computing 56 modulo
6 “ 7´ 1.

Ok, now for the proof. I recommend actually following along with the entire proof for a
specific (small) value of m and a.

Proof of Euler’s Theorem. Let’s set k “ φpmq so we don’t have to keep writing it. Consider
the positive numbers

n1, n2, ..., nk

which are less than m and relatively prime to m. I claim that the numbers

an1, an2, ..., ank

are, modulo m, just a reordering of the numbers n1, ..., nk. In other words, I claim that the
function:

g : tn1, ..., nku Ñ tn1, ..., nku

given by
gpniq “ the remainder of ani upon division by m

is a bijection. (Notice the function is well-defined: the product of two numbers relatively
prime to m is again relatively prime to m).

To see that g is a bijection, choose a multiplicative inverse b for a modulo m (which we
can do by the assumption that a is relatively prime to m). Then define

h : tn1, ..., nku Ñ tn1, ..., nku
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by
hpniq “ the remainder of bni upon division by m

Notice that g and h are composition inverse to one another:

gphpniqq ” gpbniq ” abni ” ni mod m

and similarly
hpgpniqq ” ni mod m

Two numbers between 0 and m are congruent modulo m if and only if they are equal,
therefore

gphpniqq “ ni “ hpgpniqq

This completes the proof of the claim that

an1, ..., ank

is a reordering, modulo m, of the original numbers. But then the products are congruent:

pan1q ¨ pan2q ¨ ¨ ¨ pankq ” n1 ¨ ¨ ¨nk mod m

Rewriting the left hand side we get:

akpn1 ¨ ¨ ¨nkq ” n1 ¨ ¨ ¨nk mod m

The number n1 ¨ ¨ ¨nk is relatively prime to m, so it has a multiplicative inverse c, modulo
m. Multiplying both sides by c we learn that

ak ” 1 mod m

Since we defined k as φpmq at the beginning, we are done.
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