
CHAPTER 9 

Induction 
I. S. Rubanov 

§1. Process and method of induction 

(An Introduction for Teachers). Almost everyone has once had fun ar
ranging dominoes in a row and starting a wave. Push the first domino and it topples 
the second, the second will topple the third and so forth until all the dominoes are 
toppled. Now let us change the set of dominoes into an infinite series of proposi
tions: P l , P2, P3, numbered by positive integers. Assume that we can prove 
that: 

(B): the first proposition of the series is true; 
(S): the truth of every proposition in the series implies the truth of the next 

one. 
Then, in fact, we have already proved all the propositions in the series. Indeed, 

we can "push the first domino", i.e., prove the first statement (B), and then state
ment (S) means that each domino, in falling, topples the next one. Whatever the 
"domino" (proposition) we choose, it will be eventually hit by this wave of "falling 
dominos" (proofs) . 

This is a description of the method of mathematical induction (MMI). Theorem 
(B) is called base of induction, and theorem (S) is the inductive step. Our reasoning 
with the wave of falling dominoes shows that step (8) is but a shortened form of 
the chain of theorems shown in the figure below: 

We will call theorems in this chain "steps", and the process of their successive 
proof-"the process of induction" This process can be visually represented as a 
wave of proofs, rUMing from statement to statement along a chain of the.orems. 

Psychologically, the essence of induction is in its process. How can we teach 
this? We will try to show you in a dialog between teacher ("T") and student ("S"), 
which roughly resembles a session of a real mathematical circle. At the end of the 
dialog some methodological comments for the teacher are given (references to these 
comments are indicated in the text of the dialog). 

* * * 

Problem 1. T: One box was cut off from a 16 x 16 square of graph paper. Prove 
that the figure obtained can be dissected into trominos of a certain type-"corners" 
(see Figure 64.) 

S: But this is easy-any "corner" has three boxes, and 162 -1 is divisible by 3. 
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FIGURE 64 

T: If it is so easy, could you .cut a 1 x 6 band into "corners"? Six is also divisible 
by 3! 

S: Well Actually, I should not have said that. I don't exactly know how to 
solve this problem.(l) 

T: OK, you cannot solve this problem. Perhaps you can think of another 
problem which is similar yet easier? 

S: Well, you can take another square, of smaller size, say, 4 x 4. 
T: Or 2 x 2?(2) 
S: But there is nothing to prove in this case-when you cut out any box what 

you get is just a "corner" What sense does that make? 
T: Try now to solve the problem about the 4 x 4 square. 
S: Uh-huh. A 4 x 4 square can be cut into four 2 x 2 squares. It is clear what 

to do with the one with the cut box. What about the other three? 
T: Try to cut a "corner" from them, located in the center of the big square (sep 

Figure 65). 

FIGURE 65 

S: Got it! Each of them would lack one box and turn into a "corner" So we 
can solve the problem for a 4 x 4 square too. Now? 

T: Try an 8 x 8 square. It can be dissected into four 4 x 4 squares. Make use 
of this. 

S: Well, we can reason as we did before. One of those squares has the "missing" 
box in it. And we have already proved that this one can be cut into "corners" The 
three other squares will lack one box after we cut out one "corner" in the center of 
8 x 8 square-so we will be able to dissect them, too. 
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T: Do you see now how to solve the original problem? 
S: Sure. We cut the 16 x 16 square into four 8 x 8 squares. One of them contains 

the cut box. We have just proved that it can be dissected into "corners", right? 
Then we cut out a "corner" in the center of the big square and we get three more 
8 x 8 squares, each without one box, and each can be cut into "corners" That's it! 

T: Not yet. We solved this problem by building "bridges" from similar but sim
pler questions. Could we build such bridges once more, to other, more complicated 
questions? (3) 

S: Of course. Let us prove that one can dissect a 32 x 32 square into "corners" 
We just divide it mentally into four 16 x 16 squares 

T: There you are! But is it possible to go further? 
S: Certainly. Having proved the proposition for a 32 x 32 square we can now 

derive, in the very same way, a method of dissection for a 64 x 64 square, then for 
a 128 x 128 square and so on 

T: Thus, we have an infinite chain of propositions about squares of different 
sizes. Can we say that we have proved them all? 

S: Yes, we have. First, we proved the first statement in the chain-about a 
2 x 2 square. Then we derived the second proposition from it, then the third from 
the second, et cetera. It seems quite clear that 

going along this chain we will reach any of its statements; therefore, 
all of them are true. 
T: Right. It looks like a "wave of proofs" running along the chain of theorems: 

2 x 2 ----> 4 x 4 ----> 8 x 8 ----> It is quite evident that the wave will not miss 
any statement in this chain. 

* * * 

Methodological remark. A few comments on the previous dialog. 

Comment N21. When the student "proved" the statement of the problem using 
divisibility by 3, the teacher faced a typical classroom problem-how to explain 
the nature of the error, without giving l1way too much. The teacher overcomes 
this with a counterexample, prepared beforehand. It is always useful to be aware 
of such obstacles and know some ways to avoid them. This must be done easily, 
without major distraction from the flow of solution. 

Comment N£ 2. This r~tort is not accidental. The student can hardly think about 
the 2 x 2 case as something important-it's not a problem at all (we will come across 
this psychological moment several times). However, the teacher knows this case is 
easier to start with. 

Comment N 2 3. The following "step-by-step" scheme appears in this part of the 
dialog: 

2 x 2 ----> 4 x 4 ----> 8 x 8 ----> 16 x 16 

We have here the beginning of the induction process: the base 2 x 2 and the first 
three steps. It is essential that we have made enough induction steps for the student 
to notice an analogy. Now, after the hint, he is able to develop the whole process 
of induction. 

In fact, there are other inductive solutions to this question but they would not 
yield any educational benefit, since the notion of induction in them is not as clear 
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as in the solution given above. Thus, the teacher leads the student away from these, 
using directive hints. The teacher here has played his part precisely: sometimes 
he leads .away from a deceptive analogy and helps to save the student's energy. 
Unobtrusiveness is very important: the more the student does on his/her own the 
better. 

Let us sum up the results. The student (but more often this is the responsibility 
of the teacher) explained the scheme of MMI. The underlined sentence ("going 
along this chain we will reach any of its statements") is but an informal statement 
of the principle of mathematical induction which is the cornerstone of MMI. You 
can read about the formal side of it in any of the books [76, 78, 79]. We must 
say, though, that it would not be wise to talk about this at the very beginning 
of the discussion. It may be premature or even harmful since formalization of 
this intuitively clear statement may give rise to feelings of misunderstanding and 
uncertainty. On the contrary, one must use all means to make this scheme as 
evident and vivid as possible. Aside from the "wave" and dominoes (see Figure 
66), other useful analogies include climbing a staircase, zipping a zipper, et cetera. 

FIGURE 66 

* * * 

Now let us go on with our dialog: 
T: So, we have proved an infinite series of statements about the possibility of 

dissecting squares into "corners" Now, we write them all down, without any "et 
cetera's" 

S: But we will certainly run out of paper. 
T: Yes, we would, if we wrote each statement separately. But all the statements 

look alike. Only the size of squares differ. This fact allows us to encode the whole 
chain in just one line: 

(*) A 2n x 2n square with one box cut out can be dissected into 
"corners" . 

Here we have the variable n. Each statement in our chain can be obtained by 
replacing n with a number. Fo!' instance, n = 5 gives us a proposition about the 
32 x 32 square. And what is the tenth proposition in the chain? 

S: We substitute n = 10 to get the statement about 210 x 210 , i.e., the 1024 x 1024 
square. 
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T: Look at this: a variable is such a common thing, but it is really powerful-it 
allows us to fold an infinite chain into one short sentence. So, what is "a variable"? 

S: Well it is just a letter an unknown 
T: Remember: this "letter" denotes an empty space, a room, where you c.an put 

various numbers or objects. You can also call it a "placeholder" Those numbers 
or objects that are allowed to be put into the "room" are called its possible values. 
For example, the values of the variable n in (*) are the natural numbers (positive 
integers). Because of this, sentence (*) replaces the infinite chain of statements. 

Now we must recall the proof of the infinite chain (*). Let us number all the 
statements: PI is the one about the 2 x 2 square, P2 is about the 4 x 4 square, and 
so on. 

First we proved proposition Pl. Then we dealt with the infinite chain of similar 
theorems: if PI is proved, then P2 is true; ifP2 is proved, then P3 is true, et cetera. 
Let us try to encode this chain also: "For any natural n 

S: if Pn is true, then Pn +l is also true." 
T: And now, please, devode this phrase: what do Pn and Pn +l denote? 
S: 
(**) "Whichever natural number n is, if it is alr~ady proved that 

the 2n x 2n square without one box can be cut into "corners", then it 
is also true that the 2n +l x 2n +l square without one box can be cut into 
"corners" ." 

T: Can you prove that? 
S: I think so. We mentally divide the 2n +l x 2n +l square into four 2n x 

2n squares. One of these lacks one box, and can be dissected into "corners" by 
assumption. Then we cut out one "corner" in the center of the big square so that 
it contains one box from each of the other three 2n x 2n squares. After that, we 
can use the assumption again! 

T: Absolutely. Note that as soon as you proved the general theorem (**), you 
proved all the theorems from the chain encoded by (**). For example, if n = 1, 
we get our old proof stating that the possibility of dissecting the 2 x 2 square 
implies the possibility of dissecting the 4 x 4 square. Therefore, just as (**) can be 
considered as encoding a whole chain of theorems, your reasoning can be considered 
as encoding a whole "wave of proofs" of those theorems. I believe you got it: it is 
useful and easier to prove a chain of similar theorems in this convoluted way. But 
first you must learn how to express a chain of theorems this way. 

* * * 
The method we applied in solving Problem 1 is what we call the METHOD 

OF MATHEMATICAL INDUCTION (MMI). What is its essence? 
First, we regard statement (*) not as one whole fact but as an infinite series of 

similar propositions. 
Second, we prove the first proposition in the series-this is called the "base of 

the induction." 
Third, we derive the second proposition from the first, the third (in the same 

way) from the second, et cetera. That was the "inductive step"; (**)-is its short
ened (convoluted) form. Since, step by step, we can reach any proposition from the 
base, they are all true. 
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"A method is an idea applied twice" 
(G. Polya) 

To learn MMI successfully it is usually necessary to replay the scenario above 
for several different questions. Consider now four more "key problems" 

Problem 2. Prove that number 111 ... 11 (243 ones) is divisible by 243. 

Hint. This question may be generalized to the proposition that a number written 
with 3n ones is divisible by 3n 

Base: 111 is divisible by_ 3. Students often start with the statement that 
111,111,111 is divisible by'9---Dur base sounds too easy to them. 

Here we have two obstacles 
a) an attempt to generalize the divisibility tests for 3 and 9 and use an incorrect 

"test" for divisibility by 27; 
b) reasoning of the sort: "if a number is divisible by 3 and 9, then it is divisible 

by 27 = 3 x 9." 
The correct kind of inductive step is to divide the number written with 3n +1 ones 
by the number written with 3n ones and check that the result is a multiple of 3. 

Problem 3. Prove that for any natural number n, greater than 3, there exists a 
convex n-gon with exactly 3 acute angles. 

Comment. This question is a good key problem if students already know the fact 
that a convex polygon cannot have more than 3 acute angles. The base n = 4 can 
be checked by direct .construction. 

Inductive step: let us "saw off" one of the non-acute angles. Then the number 
of angles in the polygon increases by 1 and all the acute angles are retained (see 
Figure 67). 

FIGURE 67 

Another way to do this-to build a new angle on one of the sides-is a bit more 
difficult. There are also other solutions (using inscribed polygons and so on) but 
most are more difficult for students to make precise. Perhaps the teacher can even 
give a. hint about "sawing off" an angle. 

The statement of the question is obviously true for n = 3, but we will not gain 
anything by starting the induction frOID 3, because the method fails when you try 
to make the step from n = 3 to n = 4. 

Our third question gives an example of construction by induction. You can 
read about it in more detail in [79]. 
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Problem 4. ("Tower of Hanoi") Peter has a children's game. It has three spindles 
on a base, with n rings on one of them. The rings are arranged in order of their size 
(see Figure 68). It is permitted to move the highest (smallest) ring on any spindle 
onto another spindle, except that you cannot put a larger ring on top of a smaller 
one. Prove that 

FIGURE 68 

a) It is possible to move all the rings :to one of the free spindles; 
b) Peter can do so using 2n 

- 1 moves. 
c)'It is not possible to do so using fewer moves. 

Hint. a), b): The base (n=l) is easy . 
. ' Inductive step: We have 1£ = k + 1 rings. By the inductive assumption we 

c~n move all but the largest ring to the third spindle using 2k - 1 moves. Then 
we move the remaining ring to the second spindle. After that we can move all the 
rings from the third spindle to the second using 2k - 1 moves. In all, we have made 
(2k - 1) + 1 + (2k - 1)= 2k+1 - 1 moves. It is useful to do the first few steps of 
the induction "manually", even using a physical model. ) 

c) This question must be used with car~it is more difficult than the others 
given here. The main idea of the proof is that to move the widest ring to the second 
spindle, we must first move all the other rings to the third spindle. 

Problem 5. The plane is divided into regions by several straight lines. Prove that 
one can color these regions using two colors so that any two adjacent regions have 
different colors (we call two regions adjacent if they share at least one line segment). 

Hint. Here we encounter another obstacle: no explicit variable for induction is 
given in the statement. Thus, we should start the solution by revealing this hidden 
variable. To do this, we can rewrite the statement as follows: "There are n straight 
lines on a plane The base can be n = 1 or n = 2 (either will work). The 
indu<;tive'step: remove for a moment the (k + l)st line, color the map obtained, 
then restore the removed line and reverse the colors of all the regions on one side 
of the line, 

For teachers. The first few key problems can be discussed according to 
the scenario of the dialog above; that is, growing the chain from one particular 
proposition. Students should understand the essence of the process of induction and 
the connection between chains of theorems and propositions using integer" variables. 
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If students are not well prepared one can skip the idea of constructing a chain of 
inductive steps. This can be introduced later, at a second stage, whose goal is to 
teach the students to work with the inductive step in its convoluted form. While 
doing so it would be wise to give questions in a general form (like in Problems 
3 and 4). There we already have a chain of statements and the solution may 
start right from the "unfolding", as follows: "Here we have a convoluted chain of 
theorems. What is the first theorem? The fifth? The 1995th?" However, the chain 
of inductive steps should be developed and convoluted according to the old scheme, 
until students get accustomed to it and understand well the connection between a 
long chain and its convoluted form . 

.. .. .. 

To sum up their experience with key problems, students should have a clear 

General Plan for Solution by the 
Method of Mathematical Induction 

1. Find, in the statement of the question, a series of similar propositions. If 
variables are hidden you should reveal them by reformulating the question. If there 
is no chain, try to grow that chain so that the question will be a part of it. 

2. Prove the first proposition (base of the induction). 
3. Prove that for any natural number n the truth of the nth proposition implies 

the truth of the (n + l)st proposition (inductive step). 
4. If the base and the step are proved, then all the propositions in the series are 

proved simultaneously, since you can reach any of them from the base by moving 
"step-by-step" 

The last item in this scheme is the same for all the problems, so it is often 
skipped. However, knowing it is vital. Also, the first item is not emphasized· and 
is natural for those who are used to MMI; nevertheless we recommend that the 
students pay close attention to it for a while. 

§2. MMI and guessing by analogy 

We continue our dialog. 

Problem 6. Into how many parts do n straight lines divide a plane if .no two 
of them are parallel and no three meet at the same point? (Figure 69 shows an 
example where n = 5.) 

S: Let us try to follow the scheme. Do we have a chain? It seems so: into how 
many parts does one line divide a plane?' 2 lines? 3 lines ? 

The base is evident: one line dissects a plane into 2 parts (half-planes). 
T: Or zero lines-into one part. 
S: By all means. Item three-the inductive step !? 
T: I can understand your embarrassment: we run into a new difficulty. In the 

previous problems we dealt with chains of statements, not with chains of questions. 
But we will get a chain of statements if we give hypothetical, unproved answers to 
these questions. 

S: How can we? 
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FIGURE 69 

T: Try to guess a rule, a function giving the number of parts Ln in terms of 
the number of lines n. Physicists would do an experiment. We can experiment too, 
calculating the numbers Ln for small values of n. Go ahead! 

S: OK. So, Lo = 1, Ll = 2, L2 = 4, L3 = 7, L4 = 11. I must, think a little 
.Ah, I got it! When you add the nth line the number of parts ipcreases by n. 

Hence, Ln = 1 + (1 + 2 + + n). I did it! 
T: No, not yet. Don't forget that you have only guessed it, not proved it. You 

have checked your result only for n = 0, 1, 2, 3, 4. For all other values of n this is 
just a guess based on your conjecture that adding the nth line increases the number 
of parts by n. What if this is wrong? The only guarantee is a proof. 

S: by the method of mathematical induction. 
T: But we should enhance our plan from §1 by another item: 

la. If there is a chain of questions rather than a chain of statements in a 
mathematical problem, insert your hypothetical answers. You can guess the answers 
by experimenting with the first few questions in the chain. However, after you are 
sure the answers are correct, don't forget to prove them rigorously. 

S: Now I know how to get over this. We have already proved the base, right? 
To prove the inductive step is easy: the nth line intersects the other lines at n - 1 
points, which divide the line into n parts. Therefore the nth TIne divides n of the 
old parts of the plane into new parts. 

* * * 
The process of guessing by analogy, just demonstrated by our student, is a 

very powerful and, sometimes, very dangerous tool: it is tempting to mistake the 
regularity one finds as a proof. The two examples below can serve as good medicine 
for this disease. 

Problem 7. Is it true that the.number n2 +n+41 is prime for any natural number 
n? 

Hint. The answer is no: For n = 40 we have 402 + 40 + 41 = 412, and for n = 41 
412 + 41 + 41 = 41 . 43. But anyone trying to find an answer by "experimenting" 
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with small values of n would corne to the pppo'site conclusion, since this formula 
gives -prime numbers for n from 1 through 39. This famous example was given by 
Leonard Euler. 

Problem 8! A set of n points is taken on a circle and each pair is connected by a 
segment. It happens that no three of these segments meet at the same point. Into 
how many parts do they divide the interior of the circle? 

Hint. For n = 1, 2, 3, 4, 5 we obtain 1, 2, 4, 8, and 16 respectively. This result 
provokes a guess to the formula 2n - 1 However, in fact, the number of parts equals 
n(n-l)(n-2)(n-3) + n(n-l) + 1 

24 2· 
Other similar examples can be found in [78]. 

§3. Classical elementary problems 

Among classical MMI problems ineleinentary mathematics three large groups 
can be distinguished: proofs of identities, proofs of inequalities and proofs of divis
ibility questions. Though their solutions by MMI seem to be quite simple, students 
usually encounter some obstacles of a psychological as well as of a methodical na
ture. We begin by discussing these. 

T: Let us talk more about Problem 6. Do you like the way the formula 1 + 
(1 + 2 + 3 + + n) looks? 

S: Not much. It is too bulky. It would be better to get rid of this ellipsis (the 
three dots). 

T: No problem. You can prove by MMI that 1 + 2 + 3 + + n = n(n + 1)/2. 
S: But to use MMI you need a chain of statements 
T: Take a close look: there is variable n in the formula. As we know, this is a 

good sign of a convoluted set of problems. Substitute, for instance, 1995 for n. 
S: We get 1 + 2 + + 1995 = 1995 1996/2. 
T: That is, a numerical equation. Our convoluted set of problems consists of 

all these equations (for n = 1, 2,3, , 1995)! To prove the formula means to show 
that all these numerical equations are true. If we do this, we say that this equation 
is "true for all admissible values of the variable" and it is called an identity. If an 
identity contains an integer variable you can try to prove it by induction. 

S: What if our equation is not true for some n? 
T: Then it'isnot an identity and we will not be able to prove it-the proof of 

either the base or the inducti~e step will not go through. Actually, to distinguish 
between identities and other, arbitrary equations with variables, you must preface 
identities with phrases like "for any natural number n it is true that ", but 
this is not the usual practice. It is implied that the reader knows from the context 
whether an identity or a conditional equation is being discussed. 

S: Well, let us apply MMI. Base: n = 1. So we must prove that 1 + 2 + 
+1=12/2=1?! 
T: No, no. We must prove that 1 = 1 2/2. You were puzzled by the formula 

1 + 2 + ... + n. This is quite good and convenient, but for n = 1 its "tail" 2 + .... + n 
makes no sense and, in fact, does not exist at all. 

S: OK, so the base is clear. Let us move to the second equation in the series. 
We must show that 1 + 2 = 2 3/2. This is easy: 3 = 3. Now, move to the third 
~quation: 1 + 2 + 3 = 3 . 4/2. This is easy too: 6 = 6. To the fourth it is just 
another simple calculation. So, what now? Must we check each equation directly? 
We haven't got any steps! 
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T: Try to rewrite the step in a general, convoluted form. 
S(after a while): I cannot do that either. 

87 

For teachers. To a person who has mastered MMI well enough, the proof 
of identities may seem rather trivial. However, our dialog shows two sources of 
problems for students. First, students often do not accept an identity with an 
integer variable as a chain of statements. This is probably because simple numerical 
identities are not considered independent propositions. Also, what is interesting in 
a statement such as 1 + 2 + 3 = 3 4/2 = 6? 

Second, it is next to impossible to see how the general form of the inductive step 
looks. Indeed, when you check the equations 1 + 2 = 2·3/2, 1 + 2 + 3 = 3·4/2, and 
so on, there is no connection between two successive facts-you just check them. 

That is why identities, despite their simplicity, cannot serve as key questions. 
To start learning and teaching mathematical induction from these will create trouble 
(this is not very important for really gifted students-they will manage to learn the 
method in any case). On the other hand, identities are very useful for practice, 
because their proofs are usually short and clear. 

T: Well, I will help you. Imagine that we follow the steps of the induction, one 
after another and the wave of proofs have reached the kth statement. What is that 
statement? 

S:Weobtain1+2+3+ +k=k(k+1)/2. (#) 
T: Exactly. Now, tell me, please, what is the next statement, which the wave 

has not yet reached? 
S: Certainly, n = k + 1 and we get 1 + 2 + + (k + 1) = (k + l)(k + 2)/2. 
T: Good. Let us write this as follows: 

1+2+3+ 
1 

+ k + (k + 1) = "2(k + l)(k + 2). (##) 

Now, tell me what would be the next step of induction? 
S: That's clear: to derive (##) from (#). 
T: Assume that we learned how to derive (##) from (#) for any natural 

number k. Then we would have all the steps of induction proved at once. This 
means that the inductive step states that: 

For any natural k the equation 1 + 2 + ... + k = k (k + 1) /2 implies the equation 
1 + 2 + + (k + 1) = (k + l)(k + 2)/2. 

In other words: (#) is given, and we must prove (##) (if k is an arbitrary 
natural number). For convenience we denote the left sides of (#) and .(##) as Sk 
and Sk+l respectively. 

S: Proposition (##) shows that Sk+l = Sk + (k + 1) (that is why the teacher 
has written the next-to-Iast summand!). Now we have already learned that Sk = 
k(k + 1)/2. Thus we have 

1 1 1 
Sk+l = "2k(k + 1) + (k + 1) = "2 [k(k + 1) + 2(k + 1)] = "2(k + l)(k + 2). 

T: Remember the helpful idea that we used to prove the inductive step: the 
left side of equation (##) was expressed with the left side of (#) and the latter 
was substituted into the right side of (#). 
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For teachers. Another difficulty now arises in connection with identities. It may 
not be clear to a student how to make a step "in letters" The teacher in our dialog 
showed how to overcome that. It is important that he used another letter-different 
from that used in the statement of the identity-to denote the variable. The point is 
that the letter k plays the role not of a variable but of a constant (though arbitrary) 
number marking the place that the wave of our inductive proof reached at the given 
moment. It will become a variable later, in the general statement of the. inductive 
step. 

Quite often, the variables in the statement of the proposition and in the step 
are both denoted by the same letter. While stating the step theorem, phrases like 
" now we substitute n + 1 in place of n" are used. This is not advisable in the 
beginning of the study since it disorients most students conceptually (it is hard to 
see a chain in the statement of the inductive step) as well as technically (it is not 
that easy for a beginner to substitute n + 1 for n). 

Now we can say goodbye to the characters in our dialog and go on to deal with 
problems. Problems 9-16 are about identities with the natural number n as their 
variable. 

Problem 9. Show that 1 + 3 + + (2n - 1) = n 2 

Problem 10. Show that 12 + 22 + .. + n2 = n(n + 1)(2n + 1)/6. 

Problem 11. Show that 1 2 + 2 3 + ... + (n -1) n = (n - l)n(n + 1)/3. 

Problem 12. Show-that 

1 1 1 n-l 
12+2.3+ + =--

(n -1)n n 

Problem 13. Show that 

1 +X+x2 +. + xn = (xn+l - 1)/(x - 1) 

Problem 14. Show that 

1 1 1 n 
--...,..+ + 
a(a+b) (a+b)(a+2b) 

. + = ----:------,...,.. 
(a + (n -1)b)(a + nb) a(a + nb) 

where a and b are any natural numbers. 

Problem 15. Show that 

m! (m + I)! 
Of + I! + 

(m + n)! (m + n + I)! + = , 
n! n!(m+ 1) 

where m, n = 0, I, 2, 

Problem 16. Show that 

(1-~) = n+ 1 
n2 2n 

Comments. In Problems 9-15 the proof of the inductive step is exactly the same as 
in the dialog. However, in Problem 16, it may be proved more easily by representing 
the (k+1)st left side not as a sum but as the product of the kth left side and (1- b). 
This trick may also be useful in proving certain inequalities (see below). 

In Problem 11 the base is not n = 1 but n = 2. Students should see that this 
doesn't influence the process of induction. 
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In Problem 15 induction is possible on either of the two variables. It is instruc
tive to carry out and compare both proofs. Remember to start from zero! 

Problems 11 and 12 are special cases of Problems 15 (for m = 2) and 14 (for 
a = b = 1) respectively. Given other values of m, a, and b we obtain any number 
of exerciSes like 11 and 12. It would be wise to let good students try to find the 
statement of the general problem which generates these exercises. 

Most of the identities 9-16 have good non-inductive proofs which are not too 
difficult. Problem 9 has a neat geometric proof (see Figure 70). Identity 11 can be 
obtained from identities 9 and 10. Identity 13 can be proved by division of x n +1 

- 1 
by x-I, and identity 16 by direct calculation. To prove identity 12 it suffices to 
note that its left side equals 

(l-D+(~-~)+' .+ (_1 _.!.) 
n-1 n 

and that this sum "telescopes" 

L 

FIGURE 70 

This device works for other identities too. 
Discussion of these alternative proofs can be very helpful to students who have 

already mastered MMI. 

Divisibility questions constitute the next natural step in our study. The tech
niques of forming statements and inductive steps are similar to those for identities: 
we usually find the increment of the expression under consideration and prove that 
it is divisible by a given number. Problems 17-19 have simple alternative solu
tions (using modular arithmetic). The rather difficult Problem 22 may serve as the 
source of a number of exercises like 18-19. 

Prove that for any natural number n 

Problem 17. n 3 + (n + 1)3 + (n + 2)3 is divisible by 9. 

Problem 18. 32n!+2 + 8n - 9 is divisibie by 16. 

Problem 19. 4n + 15n - 1 is divisible by 9. 

Problem 20. 11 n+2 + 122n+l is divisible by 133. 

Problem 21. 23n + 1 is, divisible by 3n+l. 
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Problem 22: ab" +- en + d is divisible by the positive integer m given that a + d, 
(b - l)c, and ab - a + c are divisible by m. 

Our trio of standard MMI themes is completed by questions involving inequali
ties. Here the proofs of the inductive steps are usually more varied (see [78]). Prove 
the following inequalities: 

Problem 23. 2" > n, where n is an arbitrary natural number. 

Problem 24. Find all natural numbers n such that 
a) 2" > 2n + 1; b) 2n > n 2 

Problem 25. 
1 1 1 13 

n + 1 + n + 2 + ... + 2n > 24' n = 2, 3, ... 

Problem 26. 2" > 1 + nv'2,,-I; n = 2,3, 

Problem 27. Prove that the absolute value of the sum of several numbers does 
not exceed the sum of the absolute values of these numbers. 

Problem 28. (1 + x)" > 1 + nx, where x > -1, xi- 0, and n = 2, 3, 

Problem 29. 
1·3·5 ... (2n-l) 1 
--------~--~ ~ ~==== 

2 . 4 . 6 ... 2n v'2n + 1 ' 
where n is any natural number. 

Hints. 23, 24: To prove the inductive step you may show that for any n, the 
increment of the left side of the inequality is greater than the increment of the right 
side. 

24b: Use 24a to prove the step. 
25: Prove ~hat the left side of the inequality is monotonically increasing. 
27: Induction can proceed on the number of sUlJUllands. 
28, 29: Se~ the hint to Problem 16. 

§4. Other models of MMI 

So far we have been dealing with the basic version of MMI. When this is well 
learned we can try other, more complicated forms of induction. Some of these can be 
considered corollaries of the basic form, but it is more natural from a methodological 
point of view to discuss them separately, keeping in mind the image of "a wave of 
proofs" 

First, consider the method "Induction from all n ~,k to n = k + 1", sometimes 
called "strong induction" 

In the usual method of MMI, the inductive step consists of deriving proposition 
PHI from the previous proposition Pk • Sometimes, however, to show the truth of 
Pk+1 we must use more than one (or even all) of the previous statements PI through 
Pk. This is certainly valid, since the wave has reached Pk and, therefore, all the 
propositions in the chain preceding it are also already proved. Thus the statement 
of the inductive step is: 

(S'): For any natural k the truth of PI, P2 , . . and Pk implies the truth of 

Pk+l' 
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Consider an example. 

Problem 30. Prove that every natural number can be represented as a sum of 
several distinct powers of 2. 

Solution. First, let us prove the base. If the number given equals 1 or 2, then the 
existence of the required representation is simple. 

Now denote the given number by n and find the largest power of 2 not exceeding 
n. Let it be 2m; that is, 2m ::::: n < 2m+1 The difference d = n - 2m is less than n 
and also less than 2m, since 2m+l = 2m + 2m By the induction hypothesis, d can 
be represented as a sum of several different powers of 2, and it is clear that 2m is 
too big to be included. Thus, adding 2m we get the required expression for n. The 
induction is complete. 

Problem 31. Prove that any polygon (not necessarily convex) can be dissected 
into triangles by disjoint diagonals (they are allowed to meet only at vertices of the 
polygon). 

Hint. Use an induction on the number of sides. The inductive step is based on a 
lemma stating that each polygon (except a triangle) has at least one diagonal which 
lies completely within the polygon. Such a diagonal dissects the polygon into two 
polygons with fewer sides. 

* * * 

Another scheme of MMI is demonstrated by 

Problem 32. It is known that x + l/x is an integer. Prove that xn + l/xn is also 
an integer (for any natural n). 

Soluti9n. We have (xk + l/xk)(x + l/x) = Xk- 1 + 1/Xk- 1 + Xk+l + l/Xk+l and 
hence xk+l + l/xk+l = (xk + l/xk)(x + l/x) - (X k- 1 + 1/Xk- 1). So we see that 
the (k + l)st sum is an integer if the two preceding sums are integers. Thus the 
process of induction will go as usual if we check that the first two sums, x + l/x 
and x 2 + 1/ x 2 , are integers. This is left to the reader. 

Comment. A peculiarity of this version of MMI is that the inductive step is based 
on two preceding propositions, not one. Thus, the base i~ this case consists of 
the first two propositions in the series (it is natural to use the word base for that 
starting segment of the chain in which the statements must be checked directly). 

Problem 33. The sequence aI, a2, , an, of numbers is such that al = 3, 
a2 = 5, and an+l = 3an - 2an-1 for n > 2. Prove that an = 2n + 1 for all natural 
numbers n. 

Hint. See the more general Problem 43. 

Remark. In Problem 33 and the next three proltlems we will encounter not only 
proof by induction but also definitions by induction: all elements of the given 
sequences, except for the first few, are defined by induction, using the preceding 
elements. Sequences defined in this way are called recursive; see [75] and [77] 
for more details. See also [79]' Chapter 2, about definitions, constructions, and 
calculations using induction. 

Problem 34. The sequence (an) is such that: al = 1, a2 = 2, an+l = an - an-l 
if n > 2. Prove that an+6 = an for all natural numbers n. 
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Problem 35. The sequence of Fibonacci numbers is defined by: Fl = F2 = 1 and 
Fn+l = Fn + Fn- 1 if n ~ 2. Prove that any natural number can be represented as 
the sum of several different Fibonacci numbers. 

Problem 36~ Prove that the nth Fibonacci number is divisible by 3 if and only if 
n is divisible by 4. 
Hint. It is not easy to prove this fact alone by induction. Prove a more general 
statement about the repetition of remainders of Fibonacci numbers modulo 3 (with 
period 8). If you want to know more about Fibonacci numbers, see [75]. 

Problem 37. A bank has an unlimited supply of 3-peso and 5-peso notes. Prove 
that it can pay any number of pesos greater than 7. 

Hint. Try induction on the number of pesos the bank must pay. The base consists 
of three facts: 8 = 5 + 3, 9 = 3 + 3 + 3, 10 = 5 + 5. Inductive step: if the bank can 
pay k, k + 1, and k + 2 pesos, then it can pay k + 3, k + 4, and k + 5 pesos. This 
induction with a compound base may be split into three standard inductions using 
the following schemes: 

8 -11-+ 14- 9 - 12 - 15 - ... , and 10 - 13 - 16 -+ 

Note that a similar splitting is impossible in Problems 32-36. 
There also exists a non-inductive solution to this problem based on the equa

tions 3n + 1 = 5 + 5 + 3(n - 3) and 3n + 2 = 5 + 3(n - 1), but it is not easier than 
the solution above. 

The following three questions are very close to Problem 37. 

Problem 38. It is allowed to tear a piece of paper into 4 or 6 smaller pieces. 
Prove that following this rule you can tear a sheet of paper into any number of 
pieces greater than 8. 

Problem 39. Prove that a square can be dissected into n squares for n ~ 6. 

Problem 40. Prove that an equilateral triangle can ~e dissected into n equilateral 
triangles for n ~ 6. 

Comments. 38: If we tear a piece of paper into 4 or 6 smaller pieces, then the 
number of pieces increases by 3 or 5 respectively. Now we use the method of solu~ion 
from Problem 37. 

FIGURE 71 
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39, 40: A square (equilateral triangle) can be dissected into 4 or 6 squares 
(equilateral triangles) as shown in Figure 71. Thus Problem 39 can be reduced to 
Problem 38. There exist other non-inductive solutions based on the possibility of 
cutting a square (equilateral triangle) into any even number (greater than 2) of. 
squares (or equilateral triangles) greater than 2--see Figure 72. 

D 

FIGURE 72 

Other schemes of induction are even more exotic. An example is the method of 
"ramifying induction" which enables us to give a proof of a remarkable inequality 
for the arithmetic and geometric means. 

Problem 41! ,Prove that for any non-negative numbers Xl! X2, , Xn 

Sketch of proof. The base: n = 2 is rather simple. Then you must use steps from 
n = 2k to 2k+l in order to prove the inequality for all n equal to power of 2. And 
finally, you prove that if the inequality is true for any n numbers, then it is true 
for any n - 1 numbers. The wave of proofs spreads in accordance wi~h the scheme 
in Figure 73. 

2--3--4 5--6--7--8 9--
I ! \'--_________ / \'----___ -----+-) _~) 

FIGURE 73 

See details in [78] (example 24), and also in the chapter "Inequalities" 

Schemes involving "backwards induction" (over negative integers) and "double 
(or, 2-dimensional) induction" (for theorems involving two natural parameters) are 
illustrated in Problems 43 and 44. 
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§5. Problems' with no comments 

Problem 42. Two relatively prime natural numbers m, n, and the number 0 are 
given. A calculator can execute only one operation: to calculate the arithmetic 
mean of two given natural numbers if they are both even or both odd. Prove that 
using this calculator you can obtain all the natural numbers 1 through n, if you 
can enter into the calculator only the three numbers initially given or results of 
previous calculations. 

Problem 43. For the sequence aI, a2, from Problem 33 we can define elements 
ao, a_I, a_2, so that the equation an+l = 3an - 2an-1 will hold true for any 
integer n (positive or negative). Prove that the equality an = 2n + 1 will still De 
true for all integers n. 

Problem 44. Prove that 2m +n - 2 ~ mn if m and n are positive integers. 

Problem 45; Several squares are given. Prove that it is possible to cut them ihto 
pieces and arrange them to form a single large square. 

Problem 46; Prove that among any 2n + 1 natural numbers there are 2n numbers 
whose sum is divisible by 2n 

Problem 47. What is the greatest number of parts into which n circles can dissect 
a plane? What about n triangles? 

Remark. Compare Problem 6. Examples of the required dissections can also be 
done by induction. 

Problem 48. Several circles are drawn on a plane. A chord then is drawn in each 
of them. Prove that this "map" can be colored using three colors so that the colors 
of any two adjacent regions are different. 

* * * 

Problem 49; Prove by "reductio ad absurdum" that the principle of mathematical 
induction stated in the very beginning of the present chapter is equivalent to the 
following "well order principle": in any non-empty set of natural numbers there 
exists a least element. Try to rewrite the solution of one of the previous problems 
(say, Problem 46) using this principle and compare it to the proof by induction. 

For more about the well order principle and its applications, see [19], pp.88-96. 

* * * 

Conclusion. The method of mathematical induction is a very helpful and useful 
idea. You will find its applications in various places in this book, as well as in 
other mathematical contexts. However, we would like to warn you against an 
"addiction" to it. You should not think that any question with statements and/or 
proofs using the words "et cetera" or "similarly" is a problem to be solved by MMI. 
Proofs by induction for many of those questions (you will see some of them in the 
chapters "Graphs-2" and "Inequalities") look rather artificial compared to other 
proofs involving such simple methods as direct calculation or recursive feasoning. 
It is not advisable to use such unnatural examples when teaching the nature of 
MMI, although they can be used well after the method is completely mastered. 


