
Primes which are sums of two squares

November 27, 2022

A lot of the material in this handout comes from Keith Conrad’s notes which can be
found here:

https://kconrad.math.uconn.edu/blurbs/ugradnumthy/Zinotes.pdf

Those notes are also much more in-depth and cover more applications. So if you find this
stuff interesting, check those out for more!

(1) The goal of this handout is to prove the following theorem of Girard (often attributed
to Fermat):

Theorem 1.1. A prime number p can be written as a sum of two squares if and only if
p “ 2 or p ” 1 mod 4.

We will prove this theorem by studying a new number system called the Gaussian inte-
gers. But before we do, let’s get acquainted with the above theorem.

Exercise 1.2. Write each of the primes

2, 5, 13, 17, 29

as a sum of two squares.

Exercise 1.3. Prove directly that 11 cannot be written as a sum of two squares.

Exercise 1.4. In this exercise you will prove one of the directions of the main theorem.

(a) List the possible values of x2 modulo 4.

(b) List the possible values of x2 ` y2 modulo 4.

(c) Prove that if p is a prime and p “ x2 ` y2 for some integers x and y, then p ” 1 mod 4
or p “ 2.

(2) In order to prove the theorem on primes which are the sum of two squares, we will need
a preliminary, mod p version of the result.
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Lemma 2.5 (Lagrange). If p ” 1 mod 4, then there is some integer m such that m2 ` 1 is
divisible by p.

Before proving the lemma, let’s play with it a bit.

Example 2.6. Let’s try it with p “ 5. Then 22 ` 1 “ 5 so m “ 2 works. It’s not the only
solution, we could also use m “ 3, since 32 ` 1 “ 10 is divisible by 5.

Exercise 2.7. For each of the primes p “ 13, 17, and 29, find an integer m so that m2` 1 ”
0 mod p.

Now let’s prove the lemma.

Proof of Lagrange’s lemma. We are interested in finding solutions to the equation

x2 ` 1 ” 0 mod p

By Fermat’s little theorem, we already know that every number satisfies

xp´1 ´ 1 ” 0 mod p

If p is odd (and most primes are!), then we can factor the left hand side as:

pxpp´1q{2 ´ 1qpxpp´1{2q ` 1q

So every number x either makes the first term vanish or the second, modulo p. A polynomial
can only have as many roots as its degree1, so not every one of the p´ 1 congruence classes
can be a root of the first factor above.

Therefore there is some integer n so that

npp´1q{2 ` 1 ” 0 mod p

If p “ 4k ` 1, then let m “ nk. Then

m2
` 1 “ n2k

` 1 “ npp´1q{2 ` 1 ” 0 mod p

This completes the proof.

Problem 2.8. In the course of the proof, we used the following fact: If

qpxq “ xd ` ad´1x
d´1

` ¨ ¨ ¨ ` a0

is a monic2 degree d polynomial with integer coefficients, and d ą 0, then there are at most
d congruence classes of integers r such that

qprq ” 0 mod p.

In this exercise you will prove that this is true using induction on d.

1This is a somewhat subtle point- how do you prove this for polynomial equations modulo p?
2That just means the coefficient of the highest power of x is 1.
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(a) First prove the base case, when d “ 1: if qpxq “ x ` b, prove that there is exactly one
congruence class of solutions to qpxq ” 0 mod p. (Hint: This is not hard.)

(b) Before moving on to the inductive step, you will have to prove the following. Suppose
qpxq is a monic, degree d polynomial and r is an integer such that

qprq ” 0 mod p

Find a monic, degree pd´ 1q polynomial fpxq such that

qpxq ” px´ rqfpxq mod p,

by which we mean that the coefficients are equivalent modulo p. This step is the key
one; it might be worth trying some examples to get a feel for what’s going on. Also,
remember: when working modulo p, you can divide by any number not divisible by p.

(c) Show that if
qpxq ” fpxqgpxq mod p

then any root of qpxq modulo p must be a root of fpxq or a root of gpxq modulo p. (Do
you see why it’s important that p is prime here?)

(d) Use the previous two parts to complete the inductive step.

(3) Okay, now it’s time to introduce the star of the show.

Definition 3.9. A Gaussian integer is a number of the form

a` bi

where a, b P Z and i is a fixed square root of ´1, that is:

i2 “ ´1

The number a is called the real part of a ` bi and the number b is called the imaginary
part. The set of Gaussian integers is denoted Zris.

Exercise 3.10. Prove that a` bi “ c` di if and only if a “ c and b “ d. Hint: One way to
do this is to solve for i and get a contradiction.

We can add Gaussian integers by adding the real and imaginary parts separately:

pa` biq ` pu` viq “ pa` uq ` pb` vqi

We can multiply by distributing and using the rule that i2 “ ´1. So:

pa` biqpu` viq “ au` avi` bui` pbiqpviq

“ au` bvi2 ` pav ` buqi

“ pau´ bvq ` pav ` buqi
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Exercise 3.11. For each pair of Gaussian integers below, compute their product and their
sum.

(a) 1` 2i and 3´ 4i

(b) 1` i and 1´ i

(c) a` bi and a´ bi

(4) Our proof of the main theorem will rest on understanding the arithmetic of Gaussian
integers in a similar way to how we understood the arithmetic of the ordinary integers.
In particular, we will be interested in understanding primes and prime factorization. The
foundation to our understanding of primes in the usual integers is the Euclidean algorithm,
which repeatedly used the fact that we can always ‘divide with remainder’. That is, if m ‰ 0
and n is another integer, then we can write

n “ mq ` r

for some 0 ď r ă |m|.
In trying to carry this out for the Gaussian integers, we run into an issue: how do we

express that some Gaussian integer is ‘smaller’ than another? For example, which of these
two is ‘smaller’?

2` 3i, 1` 4i

A first guess might be to look at real or imaginary parts, or maybe their sum. These are all
different measurements of relative size, but it turns out the one that’s the most convenient
is the following:

Definition 4.12. If a` bi is a Gaussian integer then the norm of a` bi is defined to be

Npa` biq “ a2 ` b2

One reason this is convenient is because of the following properties:

Exercise 4.13. Show that if α and β are Gaussian integers, then Npαβq “ NpαqNpβq.

Exercise 4.14. Show that Npαq ě 0 always and that Npαq “ 0 if and only if α “ 0.

Exercise 4.15. Show that if z has a multiplicative inverse, i.e. if there is a Gaussian integer
w with wz “ 1, then Npzq “ 1. Prove that the only Gaussian integers of norm 1 are 1,´1, i,
and ´i.

It will be convenient to have another way to write the norm.

Definition 4.16. If α “ a` bi is a Gaussian integer, then the conjugate of α is defined to
be a´ bi and is denoted α.
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Example 4.17. The conjugate of i is ´i. The conjugate of any ordinary integer n is just n
back again. The conjugate of 1` i is 1´ i.

Exercise 4.18. Prove that Npαq “ αα.

Exercise 4.19. Prove that the real part of α is α`α
2

and the imaginary part is α´α
2i

.

(5) Now we’ll explain how to perform division with remainder with Gaussian integers.
Before we do, we’ll need to modify the usual division of integers slightly.

Lemma 5.20 (Modified division algorithm). If m and n are integers and m ‰ 0, then there
are integers q and r so that

n “ mq ` r

and |r| ď 1
2
|m|.

Proof. First perform the usual division algorithm to write

n “ mq1 ` r1

where 0 ď r1 ă |m|. If it happens to be the case that r1 ď 1
2
|m|, then we can stop here.

Otherwise, suppose r1 ą 1
2
|m|. Then take q “ q1˘ 1 (depending on whether m is positive

or negative) and r “ n´mq.

Example 5.21. The usual division algorithm for dividing 11 by 4 tells us that

11 “ 4 ¨ 2` 3

But 3 is not less than or equal to 2. The modified division algorithm say that

11 “ 4 ¨ 3` p´1q “ 4 ¨ 3´ 1

Notice that | ´ 1| “ 1 ď 2.

Warning 5.22. There can be more than one quotient-remainder pair for the modified divi-
sion algorithm. For example, when dividing 6 by 4 we could write

6 “ 4 ¨ 1` 2

or
6 “ 4 ¨ 2´ 2

So ‘the quotient’ and ‘the remainder’ are not uniquely determined any more.

Proposition 5.23. Let α and β be Gaussian integers with β ‰ 0. Then there exist Gaussian
integers γ and ρ such that

α “ βγ ` ρ

where Npρq ď 1
2
Npβq.
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Proof. We’ll give the algorithm and leave it to you (or Keith Conrad’s notes) for a proof.

Step 1. Write αβ as m` ni.

Step 2. Perform modified division to find qj and rj with

m “ Npβqq1 ` r1, n “ Npβqq2 ` r2

and |rj| ď
1
2
Npβq.

Step 3. Then take γ “ q1 ` q2i and ρ “ α ´ βγ.

Exercise 5.24. Find quotients and remainders for dividing α by β in each of the following,
and check that the norm of the remainder is bounded above by half the norm of β.

(a) α “ 11` 10i, β “ 4` i.

(b) α “ 41` 24i, β “ 11´ 2i.

(c) α “ 37` 2i, β “ 11` 2i.

(d) α “ 1 ` 8i, β “ 2 ´ 4i. (In this case the algorithm from the proof gives two different
possible answers, can you find both?)

(6) Now that we have the power of division with remainder, we can develop arithmetic in
exactly the same way as with ordinary integers. The one caveat is that, whereas in Z the
only numbers with multiplicative inverses are ˘1, in Zris we have ˘i as well. The numbers
˘1 and ˘i are called the units of the Gaussian integers. You’ll see them crop up in our
definitions:

Definition 6.25. We say that a nonzero Gaussian integer δ is a divisor of α if there is a
Gaussian integer γ so that

α “ γδ,

and we write δ|α. We say that δ is a common divisor of α and β if

δ|α and δ|β.

We say that a common divisor δ is a greatest common divisor of α and β if, whenever ε
is another common divisor of α and β, then

Npδq ě Npεq.

We say that α and β are relatively prime if the only common divisors are units. We say
that α is prime if the only divisors of α are unit multiples of 1 or α.

Warning 6.26. Greatest common divisors are not unique! We will see shortly that they
are almost unique: any two gcd’s differ by multiplication by ˘1 or ˘i.
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Exercise 6.27. Prove that if α is a Gaussian integer with Npαq prime, then α is prime. Use
this to show that

1` i, 2` i, 3´ 4i, 4` i, 2` 5i

are all prime.

Exercise 6.28. Prove that 2 is not prime in Zris by exhibiting a factorization into two
non-unit factors.

Exercise 6.29. Prove that if p P Z is an ordinary prime with p ” 3 mod 4, then p remains
prime in Zris. Hint: Suppose that p “ αβ with Npαq, Npβq ą 1. By taking norms of both
sides, conclude that p can be written as a sum of two squares and then apply an exercise
from the first section.

Here are the main results:

Theorem 6.30 (Euclidean algorithm). Let α, β P Zris be non-zero. If we recursively apply
the division algorithm:

α “ βγ1 ` ρ1 Npρ1q ă Npβq

β “ ρ1γ2 ` ρ2 Npρ2q ă Npρ1q

ρ1 “ ρ2γ3 ` ρ3 Npρ3q ă Npρ1q

...

then it eventually terminates with a zero-remainder, and the last non-zero remainder δ is a
greatest common divisor of α and β. Moreover, any common divisor of α and β is a divisor
of δ.

Example 6.31. Compute a GCD for α “ 32` 9i and β “ 4` 11i.

Exercise 6.32. Compute a GCD for α “ 11` 3i and β “ 1` 8i.

The following results are all proven in exactly the same way as their counterparts over
Z. To check your understanding, see if you can prove all of these results.

Corollary 6.33 (Uniqueness of GCD up to units). If δ and δ1 are greatest common divisors
of nonzero Gaussian integers α and β then there is a unit u P t1,´1, i,´iu with δ “ uδ1.

Corollary 6.34 (Bezout’s theorem). If δ is a greatest common divisor of two non-zero
Gaussian integers α and β, then there are some x, y P Zris with

αx` βy “ δ

Example 6.35. Find x and y as in Bezout’s theorem for α “ 32` 9i and β “ 4` 11i.

Exercise 6.36. Find x and y as in Bezout’s theorem for α “ 11` 3i and β “ 1` 8i.
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Corollary 6.37. Two non-zero Gaussian integers α and β are relatively prime if and only
if we can find x, y P Zris with

αx` βy “ 1

Corollary 6.38. Suppose α|βγ and α and β are relatively prime. Then α|γ.

Theorem 6.39 (Fundamental Theorem of Gaussian Arithmetic). Any α P Zris with Npαq ą
1 has a unique factorization into (Gaussian) primes in the sense that, if

α “ π1 ¨ ¨ ¨ πr “ π11 ¨ ¨ ¨ π
1
s

where πj and π1k are primes, then r “ s and, after reordering, each πj is a unit multiple of
each π1j.

(7) Now we are ready to prove the main theorem!

Theorem 7.40. A prime number p can be written as a sum of two squares if and only if
p “ 2 or p ” 1 mod 4.

Proof. We have already shown that if p can be written as a sum of two squares then p “ 2
or p ” 1 mod 4. So we need to prove the converse.

If p “ 2 then certainly 2 “ 12 ` 12. So we need to prove that if p is a prime with
p ” 1 mod 4 then p can be written as a sum of two squares. By Lagrange’s lemma (Lemma
2.5), there is some integer m such that p divides m2 ` 1. Thus:

p|pm` iqpm´ iq.

I claim that p is composite in Zris. Suppose, for the sake of contradiction, that p is a
Gaussian prime. Then p must divide m ` i or m ´ i. In other words, there is some a ` bi
with

pa` pbi “ m˘ i

But then we would have pb “ ˘1 by Exercise 3.10, and that can’t happen. Therefore we
learn that p “ αβ for some non-unit Gaussian integers α and β. Then

p2 “ NpαqNpβq

Since Npαq, Npβq ą 1, we conclude from the usual Fundamental Theorem of Arithmetic
that p “ Npαq “ Npβq. But, if we write α “ x` yi, then we conclude

p “ Npx` yiq “ x2 ` y2

and we’re done!
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