# Math 303 Homework 9 

## Proofs by induction

Exercise 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$.
(a) Prove by induction that there is a real number $a$ such that $f(n)=a n$ for all $n \in \mathbb{N}$.
(b) Deduce that $f(n)=a n$ for all $n \in \mathbb{Z}$.
(c) Deduce further that $f(x)=a x$ for all $x \in \mathbb{Q}$.

Hint: To find the value of $a$ in part (a), try substituting some small values of $x$ and $y$ into the equation $f(x+y)=f(x)+f(y)$. For part (b), use the fact that $n+(-n)=0$ for all $n \in \mathbb{N}$. For part (c), consider the number $b f\left(\frac{a}{b}\right)$ when $a, b \in \mathbb{Z}$ and $b \neq 0$.

Exercise 2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f(0)>0$ and $f(x+y)=f(x) f(y)$ for all $x, y \in \mathbb{R}$. Prove that there is some positive real number $a$ such that $f(x)=a^{x}$ for all rational numbers $x$.. Hint: Like in the previous exercise, prove this first for $x \in \mathbb{N}$ (by induction), then for $x \in \mathbb{Z}$, and finally for $x \in \mathbb{Q}$.

Exercise 3. Let $a, b \in \mathbb{Z}$. Prove that $b-a$ divides $b^{n}-a^{n}$ for all $n \in \mathbb{N}$.
Exercise 4. Prove by induction that $7^{n}-2 \cdot 4^{n}+1$ is divisible by 18 for all $n \in \mathbb{N}$. Hint: Observe that $7^{n+1}-2 \cdot 4^{n+1}+1=4\left(7^{n}-2 \cdot 4^{n}+1\right)+3\left(7^{n}-1\right)$ for all $n \in \mathbb{N}$. You may need to do a separate proof by induction in your induction step.

## Some examples from calculus

Exercises 5-10 assume familiarity with the basic techniques of differential and integral calculus.
Exercise 5. Prove that $\frac{d^{n}}{d x^{n}}\left(x e^{x}\right)=(n+x) e^{x}$ for all $n \in \mathbb{N}$.
Exercise 6. Find and prove an expression for $\frac{d^{n}}{d x^{n}}\left(x^{2} e^{x}\right)$ for all $n \in \mathbb{N}$.

Exercise 7. Let $f$ and $g$ be differentiable functions. Prove that

$$
\frac{d^{n}}{d x^{n}}(f(x) g(x))=\sum_{k=0}^{n}\binom{n}{k} f^{(k)}(x) g^{(n-k)}(x)
$$

for all $n \in \mathbb{N}$, where the notation $h^{(r)}$ denotes the $r^{\text {th }}$ derivative of $h$.
Exercise 8. Find and prove an expression for the $n^{\text {th }}$ derivative of $\log (x)$ for all $n \in \mathbb{N}$.
Exercise 9. Prove that $(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)$ for all $\theta \in \mathbb{R}$ and all $n \in \mathbb{N}$. Hint: You will need to use the angle addition formulae

$$
\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \quad \text { and } \quad \cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta
$$

Exercise 10. (a) Prove that $\int_{0}^{\frac{\pi}{2}} \sin ^{n+2}(x) d x=\frac{n+1}{n+2} \int_{0}^{\frac{\pi}{2}} \sin ^{n}(x) d x$ for all $n \in \mathbb{N}$.
(b) Use induction to prove that $\int_{0}^{\frac{\pi}{2}} \sin ^{2 n}(x) d x=\frac{\pi}{2^{2 n+1}}\binom{2 n}{n}$ for all $n \in \mathbb{N}$.
(c) Find and prove an expression for $\int_{0}^{\frac{\pi}{2}} \sin ^{2 n+1}(x) d x$ for all $n \in \mathbb{N}$.

Hint: For (a) use integration by parts; you do not need induction. For parts (b) and (c), use part (a).

