## Math 303 Homework 9

## **Proofs** by induction

**Exercise 1.** Let  $f : \mathbb{R} \to \mathbb{R}$  be a function such that f(x+y) = f(x) + f(y) for all  $x, y \in \mathbb{R}$ .

(a) Prove by induction that there is a real number a such that f(n) = an for all  $n \in \mathbb{N}$ .

(b) Deduce that f(n) = an for all  $n \in \mathbb{Z}$ .

(c) Deduce further that f(x) = ax for all  $x \in \mathbb{Q}$ .

Hint: To find the value of a in part (a), try substituting some small values of x and y into the equation f(x + y) = f(x) + f(y). For part (b), use the fact that n + (-n) = 0 for all  $n \in \mathbb{N}$ . For part (c), consider the number  $bf(\frac{a}{b})$  when  $a, b \in \mathbb{Z}$  and  $b \neq 0$ .

**Exercise 2.** Let  $f : \mathbb{R} \to \mathbb{R}$  be a function such that f(0) > 0 and f(x+y) = f(x)f(y) for all  $x, y \in \mathbb{R}$ . Prove that there is some positive real number a such that  $f(x) = a^x$  for all rational numbers x. Hint: Like in the previous exercise, prove this first for  $x \in \mathbb{N}$  (by induction), then for  $x \in \mathbb{Z}$ , and finally for  $x \in \mathbb{Q}$ .

**Exercise 3.** Let  $a, b \in \mathbb{Z}$ . Prove that b - a divides  $b^n - a^n$  for all  $n \in \mathbb{N}$ .

**Exercise 4.** Prove by induction that  $7^n - 2 \cdot 4^n + 1$  is divisible by 18 for all  $n \in \mathbb{N}$ . Hint: Observe that  $7^{n+1} - 2 \cdot 4^{n+1} + 1 = 4(7^n - 2 \cdot 4^n + 1) + 3(7^n - 1)$  for all  $n \in \mathbb{N}$ . You may need to do a separate proof by induction in your induction step.

## Some examples from calculus

Exercises 5-10 assume familiarity with the basic techniques of differential and integral calculus.

**Exercise 5.** Prove that  $\frac{d^n}{dx^n}(xe^x) = (n+x)e^x$  for all  $n \in \mathbb{N}$ .

**Exercise 6.** Find and prove an expression for  $\frac{d^n}{dx^n}(x^2e^x)$  for all  $n \in \mathbb{N}$ .

**Exercise 7.** Let f and g be differentiable functions. Prove that

$$\frac{d^n}{dx^n}(f(x)g(x)) = \sum_{k=0}^n \binom{n}{k} f^{(k)}(x)g^{(n-k)}(x)$$

for all  $n \in \mathbb{N}$ , where the notation  $h^{(r)}$  denotes the  $r^{\text{th}}$  derivative of h.

**Exercise 8.** Find and prove an expression for the  $n^{\text{th}}$  derivative of  $\log(x)$  for all  $n \in \mathbb{N}$ .

**Exercise 9.** Prove that  $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$  for all  $\theta \in \mathbb{R}$  and all  $n \in \mathbb{N}$ . Hint: You will need to use the angle addition formulae

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
 and  $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$ 

**Exercise 10.** (a) Prove that  $\int_0^{\frac{\pi}{2}} \sin^{n+2}(x) \, dx = \frac{n+1}{n+2} \int_0^{\frac{\pi}{2}} \sin^n(x) \, dx$  for all  $n \in \mathbb{N}$ .

- (b) Use induction to prove that  $\int_0^{\frac{\pi}{2}} \sin^{2n}(x) \, dx = \frac{\pi}{2^{2n+1}} \binom{2n}{n} \text{ for all } n \in \mathbb{N}.$
- (c) Find and prove an expression for  $\int_0^{\frac{\pi}{2}} \sin^{2n+1}(x) dx$  for all  $n \in \mathbb{N}$ . Hint: For (a) we interaction by

Hint: For (a) use integration by parts; you do not need induction. For parts (b) and (c), use part (a).