Math 303 Homework 8

October 17, 2022

Recursive definitions

In Exercises 1-5, use the recursive definitions of addition, multiplication and exponentiation directly to prove the desired equation.

Exercise 1. 1 + 3 = 4Exercise 2. 0 + 5 = 5Exercise 3. $2 \cdot 3 = 6$ Exercise 4. $0 \cdot 5 = 0$

Exercise 5. $2^3 = 8$

Exercise 6. Give a recursive definition of new quantifiers $\exists^{=n}$ for $n \in \mathbb{N}$, where given a set X and a predicate p(x), the logical formula $\exists^{=n}x \in X$, p(x) means 'there are exactly n elements $x \in X$ such that p(x) is true'. That is, define $\exists^{=0}$, and then define $\exists^{=n+1}$ in terms of $\exists^{=n}$. Hint: For example, if there are exactly 3 elements of X making p(x) true, then that means that there is some $a \in X$ such that p(a) is true, and there are exactly two elements $x \in X$ other than a making p(x) true.

Exercise 7. Use the recursive definition of binomial coefficients (Definition 5.1.15) to prove directly that $\binom{4}{2} = 6$.

Exercise 8. (a) Find the number of trailing 0s in the decimal expansion of 41!.

(b) Find the number of trailing 0s in the binary expansion of 41!.

Hint: The number of trailing zeros in the base-*b* expansion of a natural number *n* is the greatest natural number *r* such that b^r divides *n*. How many times does 10 go into 41!? How many times does 2 go into 41!?

Exercise 9. Let N be a set, let $z \in N$ and let $s : N \to N$. Prove that (N, z, s) is a notion of natural numbers (in the sense of ??) if and only if, for every set X, every element $a \in X$ and every function $f : X \to X$, there is a unique function $h : N \to X$ such that h(z) = a and $h \circ f = s \circ h$.

Proofs by induction

Exercise 10. Find all natural numbers n such that $n^5 < 5^n$.

Exercise 11. Prove that $(1 + x)^{123 \ 456 \ 789} \ge 1 + 123 \ 456 \ 789 \ x$ for all real $x \ge -1$. Hint: Proving this by induction on x only demonstrates that it is true for *integers* $x \ge -1$, not real numbers $x \ge -1$. Try proving a more general fact by induction on a different variable, and deducing this as a special case. (Do you *really* think there is anything special about the natural number 123 456 789?)

Exercise 12. Let $a \in \mathbb{N}$ and assume that the last digit in the decimal expansion of a is 6. Prove that the last digit in the decimal expansion of a^n is 6 for all $n \ge 1$.

Exercise 13. Let $a, b \in \mathbb{R}$, and let a_0, a_1, a_2, \ldots be a sequence such that $a_0 = a, a_1 = b$ and $a_n = \frac{a_{n-1} + a_{n+1}}{2}$ for all $n \ge 1$. Prove that $a_n = a + (b - a)n$ for all $n \in \mathbb{N}$.