Math 303 Homework 8

October 17, 2022

Recursive definitions

In Exercises 1-5, use the recursive definitions of addition, multiplication and exponentiation directly to prove the desired equation.

Exercise 1. $1+3=4$
Exercise 2. $0+5=5$
Exercise 3. $2 \cdot 3=6$
Exercise 4. $0 \cdot 5=0$
Exercise 5. $2^{3}=8$
Exercise 6. Give a recursive definition of new quantifiers $\exists^{=n}$ for $n \in \mathbb{N}$, where given a set X and a predicate $p(x)$, the logical formula $\exists^{=n} x \in X, p(x)$ means 'there are exactly n elements $x \in X$ such that $p(x)$ is true'. That is, define $\exists^{=0}$, and then define $\exists^{=n+1}$ in terms of $\exists^{=n}$. Hint: For example, if there are exactly 3 elements of X making $p(x)$ true, then that means that there is some $a \in X$ such that $p(a)$ is true, and there are exactly two elements $x \in X$ other than a making $p(x)$ true.

Exercise 7. Use the recursive definition of binomial coefficients (Definition 5.1.15) to prove directly that $\binom{4}{2}=6$.
Exercise 8. (a) Find the number of trailing 0 s in the decimal expansion of 41 !.
(b) Find the number of trailing 0 s in the binary expansion of 41 !.

Hint: The number of trailing zeros in the base- b expansion of a natural number n is the greatest natural number r such that b^{r} divides n. How many times does 10 go into 41!? How many times does 2 go into 41!?

Exercise 9. Let N be a set, let $z \in N$ and let $s: N \rightarrow N$. Prove that (N, z, s) is a notion of natural numbers (in the sense of ??) if and only if, for every set X, every element $a \in X$ and every function $f: X \rightarrow X$, there is a unique function $h: N \rightarrow X$ such that $h(z)=a$ and $h \circ f=s \circ h$.

Proofs by induction

Exercise 10. Find all natural numbers n such that $n^{5}<5^{n}$.
Exercise 11. Prove that $(1+x)^{123456789} \geqslant 1+123456789 x$ for all real $x \geqslant-1$. Hint: Proving this by induction on x only demonstrates that it is true for integers $x \geqslant-1$, not real numbers $x \geqslant-1$. Try proving a more general fact by induction on a different variable, and deducing this as a special case. (Do you really think there is anything special about the natural number 123456 789?)

Exercise 12. Let $a \in \mathbb{N}$ and assume that the last digit in the decimal expansion of a is 6 . Prove that the last digit in the decimal expansion of a^{n} is 6 for all $n \geqslant 1$.

Exercise 13. Let $a, b \in \mathbb{R}$, and let $a_{0}, a_{1}, a_{2}, \ldots$ be a sequence such that $a_{0}=a, a_{1}=b$ and $a_{n}=\frac{a_{n-1}+a_{n+1}}{2}$ for all $n \geqslant 1$. Prove that $a_{n}=a+(b-a) n$ for all $n \in \mathbb{N}$.

