Math 303 Homework 7

Images and preimages

In Exercises 1-4, find the image f[U] of the subset U of the domain of the function f described in the question.

Exercise 1. $f : \mathbb{R} \to \mathbb{R}$; $f(x) = \sqrt{1 + x^2}$ for all $x \in \mathbb{R}$; $U = \mathbb{R}$.

Exercise 2. $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$; f(a, b) = a + 2b for all $(a, b) \in \mathbb{Z} \times \mathbb{Z}$; $U = \{1\} \times \mathbb{Z}$.

Exercise 3. $f : \mathbb{N} \to \mathcal{P}(\mathbb{N}); f(0) = \emptyset$ and $f(n+1) = f(n) \cup \{n\}$ for all $n \in \mathbb{N}; U = \mathbb{N}$.

Exercise 4. $f : \mathbb{R}^{\mathbb{R}} \to \mathbb{R}^{\mathbb{R}}$ (where $\mathbb{R}^{\mathbb{R}}$ is the set of all functions $\mathbb{R} \to \mathbb{R}$); f(h)(x) = h(|x|) for all $h \in \mathbb{R}^{\mathbb{R}}$ and all $x \in \mathbb{R}$; $U = \mathbb{R}^{\mathbb{R}}$. Hint: Begin by observing that each $h \in f[\mathbb{R}^{\mathbb{R}}]$ is an even function, in the sense of ??.

In Exercises 5-7, find the preimage $f^{-1}[V]$ of the subset V of the codomain of the function f described in the question.

Exercise 5. $f : \mathbb{R} \to \mathbb{R}; f(x) = \sqrt{1 + x^2}$ for all $x \in \mathbb{R}; V = (-5, 5]$.

Exercise 6. $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}; f(a, b) = a + 2b$ for all $(a, b) \in \mathbb{Z} \times \mathbb{Z}; V = \{n \in \mathbb{Z} \mid n \text{ is odd}\}.$

Exercise 7. $f : \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N}); f(A, B) = A \cap B$ for all $(A, B) \in \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N}); V = \{\emptyset\}.$

Exercise 8. Let $f : X \to Y$ be a function. For each of the following statements, either prove it is true or find a counterexample.

- (a) $U \subseteq f^{-1}[f[U]]$ for all $U \subseteq X$; (c) $V \subseteq f[f^{-1}[V]]$ for all $V \subseteq Y$;
- (b) $f^{-1}[f[U]] \subseteq U$ for all $U \subseteq X$; (d) $f[f^{-1}[V]] \subseteq V$ for all $V \subseteq Y$.

Exercise 9. Let $f: X \to Y$ be a function, let A be a set, and let $p: X \to A$ and $i: A \to Y$ be functions such that the following conditions hold:

- (i) i is injective;
- (ii) $i \circ p = f$; and

(iii) If $q: X \to B$ and $j: B \to Y$ are functions such that j is injective and $j \circ q = f$, then there is a unique function $u: A \to B$ such that $j \circ u = i$.

Prove that there is a unique bijection $v : A \to f[X]$ such that i(a) = v(a) for all $a \in f[X]$. Hint: This problem is very fiddly. First prove that conditions (i)–(iii) are satisfied when A = f[X] and p and i are chosen appropriately. Then condition (iii) in each case (for A and for f[X]) defines functions $v : A \to f[X]$ and $w : f[X] \to A$, and gives uniqueness of v. You can prove that these functions are mutually inverse using the 'uniqueness' part of condition (iii).

Exercise 10. Let $f: X \to Y$ be a function and let $U, V \subseteq Y$. Prove that:

(a)
$$f^{-1}[U \cap V] = f^{-1}[U] \cap f^{-1}[V];$$

- (b) $f^{-1}[U \cup V] = f^{-1}[U] \cup f^{-1}[V]$; and
- (c) $f^{-1}[Y \setminus U] = X \setminus f^{-1}[U].$

Thus preimages preserve the basic set operations.

Exercise 11. Let $f: X \to Y$ and $g: Y \to Z$ be functions.

- (a) Prove that $(g \circ f)[U] = g[f[U]]$ for all $U \subseteq X$;
- (b) Prove that $(g \circ f)^{-1}[W] = f^{-1}[g^{-1}[W]]$ for all $W \subseteq Z$.

Injections, surjections and bijections

Exercise 12. (a) Prove that, for all functions $f: X \to Y$ and $g: Y \to Z$, if $g \circ f$ is bijective, then f is injective and g is surjective.

(b) Find an example of a function $f: X \to Y$ and a function $g: Y \to Z$ such that $g \circ f$ is bijective, f is not surjective and g is not injective.

Hint: Avoid the temptation to prove either part of this question by contradiction. For (a), a short proof is available directly from the definitions of 'injection' and 'surjection'. For (b) find as simple a counterexample as you can

(b), find as simple a counterexample as you can.

Exercise 13. For each of the following pairs (U, V) of subsets of \mathbb{R} , determine whether the specification $f(x) = x^2 - 4x + 7$ for all $x \in U'$ defines a function $f: U \to V$ and, if it does, determine whether f is injective and whether f is surjective.

(a)
$$U = \mathbb{R}$$
 and $V = \mathbb{R}$;
(b) $U = (1,4)$ and $V = [3,7)$;
(c) $U = [3,4)$ and $V = [4,7)$;
(d) $U = (3,4]$ and $V = [4,7)$;
(e) $U = [2,\infty)$ and $V = [3,\infty)$;
(f) $U = [2,\infty)$ and $V = \mathbb{R}$.

Exercise 14. For each of the following pairs of sets X and Y, find (with proof) a bijection $f: X \to Y$.

- (a) $X = \mathbb{Z}$ and $Y = \mathbb{N}$;
- (b) $X = \mathbb{R}$ and Y = (-1, 1);
- (c) X = [0, 1] and Y = (0, 1);
- (d) X = [a, b] and Y = (c, d), where $a, b, c, d \in \mathbb{R}$ with a < b and c < d.

Exercise 15. Prove that the function $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by $f(a, b) = \binom{a+b+1}{2} + b$ for all $(a, b) \in \mathbb{N} \times \mathbb{N}$ is a bijection. Hint: Start by proving that $\binom{m}{2} < \binom{m+1}{2}$ for all $m \ge 1$. Deduce that, for all $n \in \mathbb{N}$, there is a unique natural number k such that $\binom{k+1}{2} \le n < \binom{k+2}{2}$. Can you see what this has to do with the function f?

Exercise 16. Let $e: X \to X$ be a function such that $e \circ e = e$. Prove that there exist a set Y and functions $f: X \to Y$ and $g: Y \to X$ such that $g \circ f = e$ and $f \circ g = id_Y$. Hint: Consider the set of fixed points of e—that is, elements $x \in X$ such that e(x) = x.