Math 303 Homework 6

Exercise 1. For each of the following equations, determine whether there exists a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that, for all $x, y \in \mathbb{R}$, the equation holds if and only if $y=f(x)$.
(a) $x+y=1$
(c) $x=0$
(e) $\left(1+x^{2}\right) y=1$
(b) $x^{2}+y^{2}=1$
(d) $y=0$
(f) $\left(1-x^{2}\right) y=0$

Exercise 2. Let X be a set. Prove that

$$
\forall a \in X, \exists!U \in \mathcal{P}(X),(a \in U \wedge \exists!x \in X, x \in U)
$$

Give an explicit description of the function $X \rightarrow \mathcal{P}(X)$ that is suggested by this logical formula.

Exercise 3. Show that there is only one function whose codomain is empty. What is its domain? Hint: Given a function $f: X \rightarrow \varnothing$, we must have $f(a) \in \varnothing$ for each $a \in X$.

Definition 4. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is even if $f(-x)=f(x)$ for all $x \in \mathbb{R}$, and it is odd if $f(-x)=-f(x)$ for all $x \in \mathbb{R}$.

Exercise 5. Let $n \in \mathbb{N}$. Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{n}$ for all $x \in \mathbb{R}$ is even if and only if n is even, and odd if and only if n is odd.

Exercise 6. Prove that there is a unique function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is both even and odd.
Exercise 7. Let $U \subseteq \mathbb{R}$, and let $\chi_{U}: \mathbb{R} \rightarrow\{0,1\}$ be the indicator function of U.
(a) Prove that χ_{U} is an even function if and only if $U=\{-u \mid u \in U\}$;
(b) Prove that χ_{U} is an odd function if and only if $\mathbb{R} \backslash U=\{-u \mid u \in U\}$.

Exercise 8. Prove that for every function $f: \mathbb{R} \rightarrow \mathbb{R}$, there is a unique even function $g: \mathbb{R} \rightarrow \mathbb{R}$ and a unique odd function $h: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=g(x)+h(x)$ for all $x \in \mathbb{R}$. Hint: Consider $f(x)+f(-x)$ and $f(x)-f(-x)$ for $x \in \mathbb{R}$.

Exercise 9. Let $\left\{\theta_{n}:[n] \rightarrow[n] \mid n \in \mathbb{N}\right\}$ be a family of functions such that $f \circ \theta_{m}=\theta_{n} \circ f$ for all $f:[m] \rightarrow[n]$. Prove that $\theta_{n}=\operatorname{id}_{[n]}$ for all $n \in \mathbb{N}$. Hint: Fix $n \in \mathbb{N}$ and consider how θ_{n} interacts with functions $f:[1] \rightarrow[n]$.

Exercise 10. Let X be a set and let $U, V \subseteq X$. Describe the indicator function $\chi_{U \Delta V}$ of the symmetric difference of U and V (see Definition 2.E.1) in terms of χ_{U} and χ_{V}.

Exercise 11. [This question assumes some familiarity with integral calculus.] A lie that is commonly told to calculus students is that

$$
\int \frac{1}{x} d x=\log (|x|)+c
$$

where \log denotes the natural logarithm function and c is an arbitrary real constant. Prove that it is actually the case that

$$
\int \frac{1}{x} d x=\log (|x|)+a \chi_{U}(x)+b \chi_{V}(x)
$$

where a and b are arbitrary real constants, and U and V are particular (inhabited) subsets of $\mathbb{R} \backslash\{0\}$ that you should determine.

