Math 303 Homework 5

Exercises 2-7 concern the symmetric difference of sets, defined below.

Definition 1. The symmetric difference of sets X and Y is the set $X \triangle Y$ defined by

 $X \triangle Y = \{a \mid a \in X \text{ or } a \in Y \text{ but not both}\}\$

Exercise 2. Prove that $X \triangle Y = (X \setminus Y) \cup (Y \setminus X) = (X \cup Y) \setminus (X \cap Y)$ for all sets X and Y.

Exercise 3. Let X be a set. Prove that $X \triangle X = \emptyset$ and $X \triangle \emptyset = X$.

Exercise 4. Let X and Y be sets. Prove that X = Y if and only if $X \triangle Y = \emptyset$.

Exercise 5. Prove that sets X and Y are disjoint if and only if $X \triangle Y = X \cup Y$.

Exercise 6. Prove that $X \triangle (Y \triangle Z) = (X \triangle Y) \triangle Z$ for all sets X, Y and Z. Hint: The temptation is to write a long string of equations, but it is far less painful to prove this by double containment, splitting into cases where needed. An even less painful approach is to make a cunning use of truth tables.

Exercise 7. Prove that $X \cap (Y \triangle Z) = (X \cap Y) \triangle (X \cap Z)$ for all sets X, Y and Z. Hint: The hint for the previous exercise applies here too.

Definition 8. A subset $U \subseteq \mathbb{R}$ is open if, for all $a \in U$, there exists $\delta > 0$ such that $(a - \delta, a + \delta) \subseteq U$.

In Exercises 9-12 you will prove some elementary facts about open subsets of \mathbb{R} .

Exercise 9. For each of the following subsets of \mathbb{R} , determine (with proof) whether it is open:

- (a) \emptyset ; (c) (0,1]; (e) $\mathbb{R}\setminus\mathbb{Z}$;
- (b) (0,1); (d) $\mathbb{Z};$ (f) $\mathbb{Q}.$

Exercise 10. Prove that a subset $U \subseteq \mathbb{R}$ is open if and only if, for all $a \in U$, there exist $u, v \in \mathbb{R}$ such that u < a < v and $(u, v) \subseteq U$.

Exercise 11. In this question you will prove that the intersection of finitely many open sets is open, but the intersection of infinitely many open sets might not be open.

- (a) Let $n \ge 1$ and suppose U_1, U_2, \ldots, U_n are open subsets of \mathbb{R} . Prove that the intersection $U_1 \cap U_2 \cap \cdots \cap U_n$ is open.
- (b) Prove that $(0, 1 + \frac{1}{n})$ is open for all $n \ge 1$, but that $\bigcap_{n\ge 1} (0, 1 + \frac{1}{n})$ is not open.

Exercise 12. Prove that a subset $U \subseteq \mathbb{R}$ is open if and only if it can be expressed as a union of open intervals—more precisely, $U \subseteq \mathbb{R}$ is open if and only if, for some indexing set I, there exist real numbers a_i, b_i for each $i \in I$, such that $U = \bigcup_{i \in I} (a_i, b_i)$.

Exercise 13. Let $\{A_n \mid n \in \mathbb{N}\}$ and $\{B_n \mid n \in \mathbb{N}\}$ be families of sets such that, for all $i \in \mathbb{N}$, there exists some $j \ge i$ such that $B_j \subseteq A_i$. Prove that $\bigcap_{n \in \mathbb{N}} A_n = \bigcap_{n \in \mathbb{N}} B_n$.