Math 303 Homework 4

Exercise 1. Express the following sets in the indicated form of notation.
(a) $\left\{n \in \mathbb{Z} \mid n^{2}<20\right\}$ in list notation;
(b) $\{4 k+3 \mid k \in \mathbb{N}\}$ in implied list notation;
(c) The set of all odd multiples of six in set-builder notation;
(d) The set $\left\{1,2,5,10,17, \ldots, n^{2}+1, \ldots\right\}$ in set-builder notation.

Exercise 2. Find sets X_{n} for each $n \in \mathbb{N}$ such that $X_{n+1} \varsubsetneqq X_{n}$ for all $n \in \mathbb{N}$. Can any of the sets X_{n} be empty?

Exercise 3. Express the set $\mathcal{P}(\{\varnothing,\{\varnothing,\{\varnothing\}\}\})$ in list notation.
Exercise 4. Let X be a set and let $U, V \subseteq X$. Prove that U and V are disjoint if and only if $U \subseteq X \backslash V$.

Exercise 5. For each of the following statements, determine whether or not it is true for all sets A and X, and prove your claim.
(a) If $X \backslash A=\varnothing$, then $X=A$.
(c) If $X \backslash A=A$, then $A=\varnothing$.
(b) If $X \backslash A=X$, then $A=\varnothing$.
(d) $X \backslash(X \backslash A)=A$.

Exercise 6. For each of the following statements, determine whether it is true for all sets X, Y, false for all sets X, Y, or true for some choices of X and Y and false for others.
(a) $\mathcal{P}(X \cup Y)=\mathcal{P}(X) \cup \mathcal{P}(Y)$
(c) $\mathcal{P}(X \times Y)=\mathcal{P}(X) \times \mathcal{P}(Y)$
(b) $\mathcal{P}(X \cap Y)=\mathcal{P}(X) \cap \mathcal{P}(Y)$
(d) $\mathcal{P}(X \backslash Y)=\mathcal{P}(X) \backslash \mathcal{P}(Y)$

Exercise 7. Let F be a set whose elements are all sets. Prove that if $\forall A \in F, \forall x \in A, x \in F$, then $F \subseteq \mathcal{P}(F)$.

