Math 303 Homework 3

August 11, 2022

Exercise 1. Prove that

$$
p \Leftrightarrow q \equiv(p \Rightarrow q) \wedge((\neg p) \Rightarrow(\neg q))
$$

How might this logical equivalence help you to prove statements of the form ' p if and only if q^{\prime} ?

Exercise 2. Prove using truth tables that $p \Rightarrow q \not \equiv q \Rightarrow p$. Give an example of propositions p and q such that $p \Rightarrow q$ is true but $q \Rightarrow p$ is false.

In Exercises 3-6, find a logical formula whose column in a truth table is as shown.

	p	q	r	
	\checkmark	\checkmark	\checkmark	\checkmark
	\checkmark	\checkmark	\times	\times
	\checkmark	\times	\checkmark	\times
	\checkmark	\times	\times	\times
\times	\checkmark	\checkmark	\checkmark	
\times	\checkmark	\times	\times	
\times	\times	\checkmark	\checkmark	
	\times	\times	\times	\times

Exercise 7. A new logical operator \uparrow is defined by the following rules:
(i) If a contradiction can be derived from the assumption that p is true, then $p \uparrow q$ is true;
(ii) If a contradiction can be derived from the assumption that q is true, then $p \uparrow q$ is true;
(iii) If r is any proposition, and if $p \uparrow q, p$ and q are all true, then r is true.

This question explores this curious new logical operator.
(a) Prove that $p \uparrow p \equiv \neg p$, and deduce that $((p \uparrow p) \uparrow(p \uparrow p)) \equiv p$.
(b) Prove that $p \vee q \equiv(p \uparrow p) \uparrow(q \uparrow q)$ and $p \wedge q \equiv(p \uparrow q) \uparrow(p \uparrow q)$.
(c) Find a propositional formula using only the logical operator \uparrow that is equivalent to $p \Rightarrow q$.

Exercise 8. Let X be \mathbb{Z} or \mathbb{Q}, and define a logical formula p by:

$$
\forall x \in X, \exists y \in X,(x<y \wedge[\forall z \in X, \neg(x<z \wedge z<y)])
$$

Write out $\neg p$ as a maximally negated logical formula. Prove that p is true when $X=\mathbb{Z}$, and p is false when $X=\mathbb{Q}$.

Exercise 9. Use the definition of \exists ! to write out a maximally negated logical formula that is equivalent to $\neg \exists!x \in X, p(x)$. Describe the strategy that this equivalence suggests for proving that there is not a unique $x \in X$ such that $p(x)$ is true, and use this strategy to prove that, for all $a \in \mathbb{R}$, if $a \neq-1$ then there is not a unique $x \in \mathbb{R}$ such that $x^{4}-2 a x^{2}+a^{2}-1=0$.

Exercise 10. Define a new quantifier \forall ! such that de Morgan's laws for quantifiers (Theorem 1.3.28) hold with \forall and \exists replaced by \forall ! and \exists !, respectively.

