Math 303 Homework 13

November 27, 2022

Exercise 1. (a) List the possible values of x^2 modulo 4.

- (b) List the possible values of $x^2 + y^2$ modulo 4.
- (c) Prove that if p is a prime and $p = x^2 + y^2$ for some integers x and y, then $p \equiv 1 \mod 4$ or p = 2.

Exercise 2. Prove that a + bi = c + di if and only if a = c and b = d. Hint: One way to do this is to solve for i and get a contradiction.

Exercise 3. Find quotients and remainders for dividing α by β in each of the following, and check that the norm of the remainder is bounded above by half the norm of β .

- (a) $\alpha = 11 + 10i, \beta = 4 + i.$
- (b) $\alpha = 41 + 24i, \beta = 11 2i.$
- (c) $\alpha = 37 + 2i, \beta = 11 + 2i.$
- (d) $\alpha = 1 + 8i$, $\beta = 2 4i$. (In this case the algorithm from the proof gives two different possible answers, can you find both?)

Exercise 4. Prove that if $p \in \mathbb{Z}$ is an ordinary prime with $p \equiv 3 \mod 4$, then p remains prime in $\mathbb{Z}[i]$. Hint: Suppose that $p = \alpha\beta$ with $N(\alpha), N(\beta) > 1$. By taking norms of both sides, conclude that p can be written as a sum of two squares and then apply an exercise from the first section.

Problem 5. Let p be a prime. We used the following fact in the notes: If

$$q(x) = x^d + a_{d-1}x^{d-1} + \dots + a_0$$

is a monic¹ degree d polynomial with integer coefficients, and d > 0, then there are at most d congruence classes of integers r such that

$$q(r) \equiv 0 \bmod p.$$

In this exercise you will prove that this is true using induction on d.

¹That just means the coefficient of the highest power of x is 1.

- (a) First prove the base case, when d = 1: if q(x) = x + b, prove that there is exactly one congruence class of solutions to $q(x) \equiv 0 \mod p$. (Hint: This is not hard.)
- (b) Before moving on to the inductive step, you will have to prove the following. Suppose q(x) is a monic, degree d polynomial and r is an integer such that

$$q(r) \equiv 0 \mod p$$

Find a monic, degree (d-1) polynomial f(x) such that

$$q(x) \equiv (x - r)f(x) \bmod p,$$

by which we mean that the coefficients are equivalent modulo p. This step is the key one; it might be worth trying some examples to get a feel for what's going on. Also, remember: when working modulo p, you can *divide* by any number not divisible by p.

(c) Show that if

$$q(x) \equiv f(x)g(x) \mod p$$

then any root of q(x) modulo p must be a root of f(x) or a root of g(x) modulo p. (Do you see why it's important that p is prime here?)

(d) Use the previous two parts to complete the inductive step.