Math 303 Homework 13

November 27, 2022

Exercise 1. (a) List the possible values of x^{2} modulo 4.
(b) List the possible values of $x^{2}+y^{2}$ modulo 4 .
(c) Prove that if p is a prime and $p=x^{2}+y^{2}$ for some integers x and y, then $p \equiv 1 \bmod 4$ or $p=2$.

Exercise 2. Prove that $a+b i=c+d i$ if and only if $a=c$ and $b=d$. Hint: One way to do this is to solve for i and get a contradiction.

Exercise 3. Find quotients and remainders for dividing α by β in each of the following, and check that the norm of the remainder is bounded above by half the norm of β.
(a) $\alpha=11+10 i, \beta=4+i$.
(b) $\alpha=41+24 i, \beta=11-2 i$.
(c) $\alpha=37+2 i, \beta=11+2 i$.
(d) $\alpha=1+8 i, \beta=2-4 i$. (In this case the algorithm from the proof gives two different possible answers, can you find both?)

Exercise 4. Prove that if $p \in \mathbb{Z}$ is an ordinary prime with $p \equiv 3 \bmod 4$, then p remains prime in $\mathbb{Z}[i]$. Hint: Suppose that $p=\alpha \beta$ with $N(\alpha), N(\beta)>1$. By taking norms of both sides, conclude that p can be written as a sum of two squares and then apply an exercise from the first section.

Problem 5. Let p be a prime. We used the following fact in the notes: If

$$
q(x)=x^{d}+a_{d-1} x^{d-1}+\cdots+a_{0}
$$

is a monic ${ }^{1}$ degree d polynomial with integer coefficients, and $d>0$, then there are at most d congruence classes of integers r such that

$$
q(r) \equiv 0 \bmod p
$$

In this exercise you will prove that this is true using induction on d.

[^0](a) First prove the base case, when $d=1$: if $q(x)=x+b$, prove that there is exactly one congruence class of solutions to $q(x) \equiv 0 \bmod p$. (Hint: This is not hard.)
(b) Before moving on to the inductive step, you will have to prove the following. Suppose $q(x)$ is a monic, degree d polynomial and r is an integer such that
$$
q(r) \equiv 0 \bmod p
$$

Find a monic, degree $(d-1)$ polynomial $f(x)$ such that

$$
q(x) \equiv(x-r) f(x) \bmod p
$$

by which we mean that the coefficients are equivalent modulo p. This step is the key one; it might be worth trying some examples to get a feel for what's going on. Also, remember: when working modulo p, you can divide by any number not divisible by p.
(c) Show that if

$$
q(x) \equiv f(x) g(x) \bmod p
$$

then any root of $q(x)$ modulo p must be a root of $f(x)$ or a root of $g(x)$ modulo p. (Do you see why it's important that p is prime here?)
(d) Use the previous two parts to complete the inductive step.

[^0]: ${ }^{1}$ That just means the coefficient of the highest power of x is 1 .

