Math 303 Homework 11

November 7, 2022

Exercise 1. Consider the prime numbers $2=p_{1}, 3=p_{2}, p_{3}, p_{4}, \ldots$ What is the smallest number n for which

$$
p_{1} \cdots p_{n}+1
$$

is not prime? (This isn't a 'proof' exercise, just compute until you get one that isn't. I promise $n<10$ so it won't be too bad.)

Exercise 2. Let a and b be nonzero integers. If there exist integers r and s with $a r+b s=1$, show that a and b are coprime (i.e. show that $\operatorname{gcd}(a, b)=1$). Hint: The only nonnegative divisor of 1 is 1 itself.

Exercise 3. Let $\left(F_{n}\right)_{n \geqslant 0}$ be the Fibonacci sequence, where $F_{0}=0, F_{1}=1$, and $F_{n+2}=$ $F_{n+1}+F_{n}$. Prove that F_{n} and F_{n+1} are coprime.

Exercise 4. Let $x, y \in \mathbb{Z}_{\geqslant 0}$ be coprime. If $x y$ is a perfect square (i.e. the square of an integer) prove that both x and y are perfect squares. Hint: Use the Fundamental Theorem of Arithmetic.

Exercise 5. Prove that there are an infinite number of primes of the form $6 n+5$.

