Math 303 Homework 1

Exercises from Infinite Descent.
Exercise 1 (Optional). The video-sharing website YouTube assigns to each video a unique identifier, which is a string of 11 characters from the set

$$
\{A, B, \ldots, Z, a, b, \ldots, z, 0,1,2,3,4,5,6,7,8,9,-,-\}
$$

This string is actually a natural number expressed in base-64, where the characters in the above set represent the numbers 0 through 63 , in the same order-thus C represents 2 , c represents 28, 3 represents 55, and _ represents 63 . According to this schema, find the natural number whose base- 64 expansion is dQw 4 w 9 WgXcQ , and find the base- 64 expansion of the natural number 7159047702620056984.

Exercise 2. Let $a, b, c, d \in \mathbb{Z}$. Under what conditions is $(a+b \sqrt{2})(c+d \sqrt{2})$ an integer?
Exercise 3. Suppose an integer m leaves a remainder of i when divided by 3, and an integer n leaves a remainder of j when divided by 3 , where $0 \leqslant i, j<3$. Prove that $m+n$ and $i+j$ leave the same remainder when divided by 3 .

Exercise 4. What are the possible remainders of n^{2} when divided by 3 , where $n \in \mathbb{Z}$?
Definition 5. A set X is closed under an operation \odot if, whenever a and b are elements of $X, a \odot b$ is also an element of X.

In Exercises 6-12, determine which of the number sets $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and \mathbb{R} are closed under the operation \odot defined in the question.

Exercise 6. $a \odot b=a+b$
Exercise 7. $a \odot b=a-b$
Exercise 8. $a \odot b=(a-b)(a+b)$
Exercise 9. $a \odot b=(a-1)(b-1)+2(a+b)$
Exercise 11. $a \odot b=\frac{a}{\sqrt{b^{2}+1}}$

Exercise 10. $a \odot b=\frac{a}{b^{2}+1}$
Definition 13. A complex number α is algebraic if $p(\alpha)=0$ for some nonzero polynomial $p(x)$ over \mathbb{Q}.

Exercise 14. Let α be a rational number. Prove that α is an algebraic number.
Exercise 15. Prove that $\sqrt{2}$ is an algebraic number.
Exercise 16. Prove that $\sqrt{2}+\sqrt{3}$ is an algebraic number.
Exercise 17. Prove that $x+y i$ is an algebraic number, where x and y are any two rational numbers.

