Math 303 Homework 1

Exercises from Infinite Descent.

Exercise 1 (Optional). The video-sharing website YouTube assigns to each video a unique identifier, which is a string of 11 characters from the set

$$\{A, B, \dots, Z, a, b, \dots, z, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -, -\}$$

This string is actually a natural number expressed in base-64, where the characters in the above set represent the numbers 0 through 63, in the same order—thus C represents 2, c represents 28, 3 represents 55, and _ represents 63. According to this schema, find the natural number whose base-64 expansion is dQw4w9WgXcQ, and find the base-64 expansion of the natural number 7 159 047 702 620 056 984.

Exercise 2. Let $a, b, c, d \in \mathbb{Z}$. Under what conditions is $(a + b\sqrt{2})(c + d\sqrt{2})$ an integer?

Exercise 3. Suppose an integer m leaves a remainder of i when divided by 3, and an integer n leaves a remainder of j when divided by 3, where $0 \le i, j < 3$. Prove that m + n and i + j leave the same remainder when divided by 3.

Exercise 4. What are the possible remainders of n^2 when divided by 3, where $n \in \mathbb{Z}$?

Definition 5. A set X is **closed** under an operation \odot if, whenever a and b are elements of X, $a \odot b$ is also an element of X.

In Exercises 6–12, determine which of the number sets \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} are closed under the operation \odot defined in the question.

Exercise 6. $a \odot b = a + b$ Exercise 7. $a \odot b = a - b$ Exercise 8. $a \odot b = (a - b)(a + b)$ Exercise 9. $a \odot b = (a - 1)(b - 1) + 2(a + b)$ Exercise 10. $a \odot b = \frac{a}{b^2 + 1}$ Exercise 11. $a \odot b = \frac{a}{\sqrt{b^2 + 1}}$ Exercise 12. $a \odot b = \begin{cases} a^b & \text{if } b > 0, b \in \mathbb{Q} \\ 0 & \text{else} \end{cases}$

Definition 13. A complex number α is **algebraic** if $p(\alpha) = 0$ for some nonzero polynomial p(x) over \mathbb{Q} .

Exercise 14. Let α be a rational number. Prove that α is an algebraic number.

Exercise 15. Prove that $\sqrt{2}$ is an algebraic number.

Exercise 16. Prove that $\sqrt{2} + \sqrt{3}$ is an algebraic number.

Exercise 17. Prove that x + yi is an algebraic number, where x and y are any two rational numbers.